• Title/Summary/Keyword: Low temperature applications

Search Result 875, Processing Time 0.029 seconds

Effect of (Al, Nb) Co-Doping on the Complex Dielectric Properties and Electric Modulus of BaTiO3-Based Ceramics

  • Ziheng Huang;Ruifeng Niu; Depeng Wang;Weitian Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.321-329
    • /
    • 2024
  • In this work, a series of BaTiO3-based ceramic materials, Ba(Al0.5Nb0.5)xTi1-xO3 (x = 0, 0.04, 0.06, 0.08), were synthesized using a standard solid-state reaction technique. X-ray diffraction profiles indicated that the Al+Nb co-doping into BaTiO3 does not change the crystal structure significantly with a doping concentration up to 8 %. The doping ions exist in Al3+ and Nb5+ chemical states, as revealed by X-ray photoelectron spectroscopy. The frequency-dependent complex dielectric properties and electric modulus were studied in the temperature range of 100~380 K. A colossal dielectric permittivity (>1.5 × 104) and low dielectric loss (<0.01) were demonstrated at the optimal dopant concentration x = 0.04. The observed dielectric behavior of Ba(Al0.5Nb0.5)xTi1-xO3 ceramics can be attributed to the Universal Dielectric Response. The complex electric modulus spectra indicated the grains exhibited a significant decrease in capacitance and permittivity with increasing co-doping concentration. Our results provide insight into the roles of donor and acceptor co-doping on the properties of BaTiO3-based ceramics, which is important for dielectric and energy storage applications.

Photoactivated Metal Oxide-based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination

  • Sunwoo Lee;Gye Hyeon Lee;Myungwoo Choi;Gana Park;Dakyung Kim;Sangbin Lee;Jeong-O Lee;Donghwi Cho
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.274-287
    • /
    • 2024
  • Chemiresistors play a crucial role in numerous research fields, including environmental monitoring, healthcare, and industrial safety, owing to their ability to detect and quantify gases with high sensitivity and specificity. This review provides a comprehensive overview of the recent advancements in photoactivated chemiresistors and emphasizes their potential for the development of highly sensitive, selective, and low-power gas sensors. This study explores a range of structural configurations of sensing materials, from zero-dimensional quantum dots to three-dimensional, porous nanostructures and examines the impact of these designs on the photoactivity, gas interactions, and overall sensor performance-including gas responses and recovery rates. Particular focus is placed on metal-oxide semiconductors and the integration of ultraviolet micro-light emitting diodes, which have gained attention as key components for next-generation sensing technologies owing to their superior photoactivity and energy efficiency. By addressing existing technical challenges, such as limited sensitivity, particularly at room temperature (~22℃), this paper outlines future research directions, highlighting the potential of photoactivated chemiresistors in developing high-performance, ultralow-power gas sensors for the Internet of Things and other advanced applications.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

(U-Th)/He Dating: Principles and Applications ((U-Th)/He 연령측정법의 원리와 응용)

  • Min, Kyoung-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.239-247
    • /
    • 2014
  • The (U-Th)/He dating utilizes the production of alpha particles ($^4He$ atoms) during natural radioactive decays of $^{238}U$, $^{235}U$ and $^{232}Th$. (U-Th)/He age can be determined from the abundances of the parent nuclides $^{238}U$, $^{235}U$ and $^{232}Th$ and the radiogenic $^4He$. Because helium is one of the noble gases (non-reactive) with a relatively small radius, it diffuses rapidly in many geological materials, even at low temperatures. Therefore, ingrowth of $^4He$ during radioactive decay competes with diffusive loss at elevated temperatures during the geologic time scale, determining the amount of $^4He$ existing today in natural samples. For example, He diffusion in apatite is known to be very rapid compared to that in most other minerals, causing a significant diffusive loss at ${\sim}80^{\circ}C$ or higher. At ${\sim}40^{\circ}C$, He diffusion in apatite becomes slow enough to preserve most $^4He$ in the sample. Thus, an apatite's (U-Th)/He age represents the timing when the sample passed through the temperature range of $80-40^{\circ}C$. The crustal depth corresponding to this temperature range is called a "partial retention zone." Normal closure temperatures for a typical grain size and cooling rate are ${\sim}60-70^{\circ}C$ for apatite and ${\sim}200^{\circ}C$ for zircon and titanite. Because the apatite He closure temperature is lower than that of most other thermochronometers, it can provide critical constraints on relatively recent or shallow-crustal exhumation histories.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Applications of Functional Tray Form Packaging to Extend the Freshness of High-Quality 'Fuji' Apples (특 등급 품질 후지사과 선도유지를 위한 플라스틱 용기 포장 효과 연구)

  • Chung, Dae-Sung;Lee, Youn-Suk
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.817-823
    • /
    • 2009
  • We investigated the effects of storage temperature and packaging treatment on the freshness of high-quality 'Fuji' apples to improve consumer confidence in the maintenance of high fruit quality during distribution. A 0.35 mm-deep PET tray form-sealed with a 0.05 mm LDPE film lid was developed and tested with the aim of optimizing gas composition within the package headspace to utilize potential modified atmosphere (MA) storage to maintain the freshness of apples. Weight loss, color difference, firmness, respiration rate, gas concentrations in packages, acidity, solid soluble content, and fruit decay rate were measured during storage at $5^{\circ}C$ and $25^{\circ}C$. The results showed that respiration rate, weight loss, color difference, and firmness were lower and overall quality better during storage at $5^{\circ}C$ compared with $25^{\circ}C$. Also, the fruits packed in the functional tray form showed a low level of quality changes compared with the control (no packaging). The accumulated gasconcentrations in the headspace of the packages decreased from 21% to 12% $O_2$ and increased from 0% to 5% $CO_2$ (v/v) on day 7, and after remained at those levels thereafter. Soluble solid contents and total acidities of the packaged fruits were in the range of $11\;-\;14^{\circ}Brix$ and 0.2 0.3% during storage. Decay rates in the control and packaged fruits were more than 20% and less than 10% at 3 weeks, respectively. Based on the standard acceptable level (less than 10%) of total weight loss, it could be estimated that the shelf life of top-quality fruits packed in functional trays was 3 weeks at $5^{\circ}C$ and 16 weeks at $25^{\circ}C$, whereas the shelf life of the control fruit was 1 week and 12 weeks, respectively. For the top-quality fruit "Fuji" apples, the best results were obtained with a functional tray form for packaging treatment and a storage temperature of $5^{\circ}C$.

Electrical Property of the Li2O-2SiO2 Glass Sintered by Spark Plasma Sintering (Spark Plasma Sintering으로 제조한 Li2O-2SiO2 유리 소결체의 전기적 특성)

  • Yoon, Hae-Won;Song, Chul-Ho;Yang, Yong-Seok;Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.61-65
    • /
    • 2012
  • A $Li_2O-2SiO_2$ ($LS_2$) glass was investigated as a lithium-ion conducting oxide glass, which is applicable to a fast ionic conductor even at low temperature due to its high mechanical strength and chemical stability. The $Li_2O-2SiO_2$ glass is likely to be broken into small pieces when quenched; thus, it is difficult to fabricate a specifically sized sample. The production of properly sized glass samples is necessary for device applications. In this study, we applied spark plasma sintering (SPS) to fabricate $LS_2$ glass samples which have a particular size as well as high transparency. The sintered samples, $15mm\phi{\times}2mmT$ in size, ($LS_2$-s) were produced by SPS between $480^{\circ}C$ and $500^{\circ}C$ at 45MPa for 3~5mim, after which the thermal and dielectric properties of the $LS_2$-s samples were compared with those of quenched glass ($LS_2$-q) samples. Thermal behavior, crystalline structure, and electrical conductivity of both samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and an impedance/gain-phase analyzer, respectively. The results showed that the $LS_2$-s had an amorphous structure, like the $LS_2$-q sample, and that both samples took on the lithium disilicate structure after the heat treatment at $800^{\circ}C$. We observed similar dielectric peaks in both of the samples between room temperature and $700^{\circ}C$. The DC activation energies of the $LS_2$-q and $LS_2$-s samples were $0.48{\pm}0.05eV$ and $0.66{\pm}0.04eV$, while the AC activation energies were $0.48{\pm}0.05eV$ and $0.68{\pm}0.04eV$, respectively.

Synthesis and Characterization of Pyridinium Dinitramide Salt (피리디니움 디나이트라아마이드염의 합성과 특성연구)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2016
  • A new solid oxidizer, pyridinium dinitramide (Py-DN) is a low toxic energetic material which can be utilized as a HPGP (high performance green propellant). In this work, Py-DN was synthesized using various starting materials including potassium sulfamate, pyridine hydrochloride, strong nitric acid and sulfuric acid. Physical and chemical properties of the Py-DN were characterized using UV-Vis, FT-IR and a thermal analyzer and their properties were compared to those of previously prepared salts including ammonium dinitramide[ADN, $NH_4N(NO_2)_2$] and guanidine dinitramide[GDN, $NH_2C(NH_2)NH_2N(NO_2)_2$] in our lab. Endothermic and exothermic decomposition temperatures of Py-DN were $77.4^{\circ}C$ and $144.7^{\circ}C$, respectively. The combustion caloric value was 1739 J/g, which is thermally more sensitive than that of conventional dinitramides. It may enable to lower the decomposition temperature, which can reduce preheating temperature required for satellite thruster applications.

Stable Liquid Paraffin-in-Water Nanoemulsions Prepared by Phase Inversion Composition Method (조성 상전이 방법으로 제조된 안정한 액상 파라핀-물 나노에멀젼)

  • Kim, Eun Hee;Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Oil-in-water nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via the PIC (phase inversion composition) method. With the increase of preparation temperature from $30^{\circ}C$ to $80^{\circ}C$, the diameter of emulsion droplets decreased from 120 nm to 40 nm, proving the formation of nanoemulsions. By varying the HLB (hydrophilic lipophilic balance) of mixed surfactants, we found that there was an optimum HLB around 12.0 ~ 13.0 corresponding to the minimum droplet size. The viscosity of nanoemulsions clearly increased with droplet volume fraction, f, but the droplet size slightly increased. Significantly, at ${\phi}{\leq}0.3$, the size distribution of nanoemulsions kept constant more than 2 months. These results proved that the viscous paraffin oil can hardly be dispersed by the PIC method at $30^{\circ}C$, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in cosmetic applications.