• 제목/요약/키워드: Low resolution

검색결과 2,644건 처리시간 0.027초

A Novel Algorithm for Face Recognition From Very Low Resolution Images

  • Senthilsingh, C.;Manikandan, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.659-669
    • /
    • 2015
  • Face Recognition assumes much significance in the context of security based application. Normally, high resolution images offer more details about the image and recognizing a face from a reasonably high resolution image would be easier when compared to recognizing images from very low resolution images. This paper addresses the problem of recognizing faces from a very low resolution image whose size is as low as $8{\times}8$. With the use of CCTV(Closed Circuit Television) and with other surveillance camera-based application for security purposes, the need to overcome the shortcomings with very low resolution images has been on the rise. The present day face recognition algorithms could not provide adequate performance when employed to recognize images from VLR images. Existing methods use super-resolution (SR) methods and Relation Based Super Resolution methods to construct from very low resolution images. This paper uses a learning based super resolution method to extract and construct images from very low resolution images. Experimental results show that the proposed SR algorithm based on relationship learning outperforms the existing algorithms in public face databases.

저해상도 양자화된 이미지를 이용하여 연산량을 줄인 움직임 추정 기법 (A motion estimation algorithm with low computational cost using low-resolution quantized image)

  • 이성수;채수익
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.81-95
    • /
    • 1996
  • In this paper, we propose a motio estiamtion algorithm using low-resolution quantization to reduce the computation of the full search algorithm. The proposed algorithm consists of the low-resolution search which determins the candidate motion vectors by comparing the low-resolution image and the full-resolution search which determines the motion vector by comparing the full-resolution image on the positions of the candidate motion vectors. The low-resolution image is generated by subtracting each pixel value in the reference block or the search window by the mean of the reference block, and by quantizing it is 2-bit resolution. The candidate motion vectors are determined by counting the number of pixels in the reference block whose quantized codes are unmatched to those in the search window. Simulation results show that the required computational cost of the proposed algorithm is reduced to 1/12 of the full search algorithm while its performance degradation is 0.03~0.12 dB.

  • PDF

Stage-GAN with Semantic Maps for Large-scale Image Super-resolution

  • Wei, Zhensong;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3942-3961
    • /
    • 2019
  • Recently, the models of deep super-resolution networks can successfully learn the non-linear mapping from the low-resolution inputs to high-resolution outputs. However, for large scaling factors, this approach has difficulties in learning the relation of low-resolution to high-resolution images, which lead to the poor restoration. In this paper, we propose Stage Generative Adversarial Networks (Stage-GAN) with semantic maps for image super-resolution (SR) in large scaling factors. We decompose the task of image super-resolution into a novel semantic map based reconstruction and refinement process. In the initial stage, the semantic maps based on the given low-resolution images can be generated by Stage-0 GAN. In the next stage, the generated semantic maps from Stage-0 and corresponding low-resolution images can be used to yield high-resolution images by Stage-1 GAN. In order to remove the reconstruction artifacts and blurs for high-resolution images, Stage-2 GAN based post-processing module is proposed in the last stage, which can reconstruct high-resolution images with photo-realistic details. Extensive experiments and comparisons with other SR methods demonstrate that our proposed method can restore photo-realistic images with visual improvements. For scale factor ${\times}8$, our method performs favorably against other methods in terms of gradients similarity.

LOW RESOLUTION RAINFALL ESTIMATIONS FROM PASSIVE MICROWAVE RADIOMETERS

  • Shin, Dong-Bin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.378-381
    • /
    • 2007
  • Analyses of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer (TMI) and precipitation radar (PR) data show that the rainfall inhomogeneity, represented by the coefficient of variation, decreases as rain rate increases at the low resolution (the footprint size of TMI 10 GHz channel). The rainfall inhomogeneity, however, is relatively constant for all rain rates at the high resolution (the footprint size of TMI 37 GHz channel). Consequently, radiometric signatures at lower spatial resolutions are characterized by larger dynamic range and smaller variability than those at higher spatial resolution. Based on the observed characteristics, this study develops a low-resolution (${\sim}40{\times}40$ km) rainfall retrieval algorithm utilizing realistic rainfall distributions in the a-priori databases. The purpose of the low-resolution rainfall algorithm is to make more reliable climatological rainfalls from various microwave sensors, including low-resolution radiometers.

  • PDF

하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리 (Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling)

  • 박종현;강문기
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.

컴퓨터로 설계한 홀로그램 광 저대역 필터의 특성 분석 (The Characteristics of Computer-Generated Holographic Optical Low-Pass Filter)

  • 김인길;고춘수;임성우;오용호;이재철
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1261-1267
    • /
    • 2003
  • Since the grating optical low-pass fillet degrades the resolution of images, we developed a hologram optical low-pass filter that show low degradation of the image and studied its characteristics. We designed the hologram that divides input beam into circular shaped 21 beams with a Monte-Carlo based hologram generation program and calculated its MTE characteristics to compare it with that of a grating filter. The hologram was manufactured through the optical lithography process and attached to a digital imaging device (Zoran 732212) for measurement. The moirfiltering is compared with zone plate images and the resolution loss is measured with USAF resolution chart. The hologram optical low-pass filter showed better characteristics in both moly filtering and resolution.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템 (Untact Face Recognition System Based on Super-resolution in Low-Resolution Images)

  • 배현빈;권오설
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

Reconstruction of High-Resolution Facial Image Based on A Recursive Error Back-Projection

  • Park, Joeng-Seon;Lee, Seong-Whan
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.715-717
    • /
    • 2004
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on a recursive error back-projection of top-down machine learning. A face is represented by a linear combination of prototypes of shape and texture. With the shape and texture information about the pixels in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those of texture by solving least square minimization. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes, In addition to, a recursive error back-projection is applied to improve the accuracy of synthesized high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution one captured at a distance.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF