• Title/Summary/Keyword: Low pressure

Search Result 7,508, Processing Time 0.034 seconds

Behavior of Organic Matter, Chlorine Residual and Disinfection By-Products (DBPs) Formation during UV Treatment of Wastewater Treatment Plant Effluents (하수처리장 방류수의 UV 처리시 유기물질, 잔류염소 및 소독부산물 생성 거동)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • Study on effluent organic matter (EfOM) characteristic and removal efficiency is required, because EfOM is important in regard to the stability of effluents reuse, quality issues of artificial recharge and water conservation of aqueous system. UV technology is widely used in wastewater treatment. Many reports have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on EfOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics. The high intensity of pulsed UV would mineralize EfOM itself as well as change the characteristics of EfOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of EfOM. The objective of this study is to investigate the effect on EfOM, chlorine residual, and chlorinated DBPs formation with low pressure and pulsed UV treatment. The removal of organic matter through low pressure UV treatment is insignificant effect. Pulsed UV treatment effectively removes/transforms EfOM. As a result, the chlorine consumption is changed and chlorine DBPs formation is decreased. However, excessive UV treatment caused problems of increasing chlorine consumption and generating unknown by-products.

The Characteristic of Wind Pressure of Low-rise Building Located Behind a Circle Wind Fence (원형방풍팬스 후면에 있는 저층건물의 풍압특성)

  • Jeon, Jong-Gil;You, Jang-Youl;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.102-109
    • /
    • 2006
  • The effects of wind fence on the pressure characteristics around low-rise building model were investigated experimentally. Flow characteristics of turbulences behind wind fence were measured using hot-wire anemometer. The wind fence characterize by varying the porosity of 0 %, 40 % and the distances from the wind fence from 1 H to 6 H with maintaining the uniform flow velocity of 6 m/s. We investigated the overall characterization of the low-rise building by measuring pressure seventy four on model. The effects of porosity fences varied with the porosity of the fence and measurement locations(1H-6H). The 0% porosity proved to be effective for the protection area of 4H to 6H, but the 40% porosity proved to be effective for the protection area of 1H to 6H. The low-rise building of front face was found to be best wind fence for decreasing the mean, maximum and minimum pressure fluctuation.

  • PDF

A Study on Driving System and Constant Output System for a Low Pressure UV Lamp (저압 UV램프 구동시스템 및 출력안정화 시스템에 관한 연구)

  • Yi, Chin-Woo;No, Jae-Yup
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.19-23
    • /
    • 2005
  • The target of this research is a design of constant and high efficiency driving system for a low pressure UV lamp. An UV lamp system is one of wide range electrical equipments for semiconductor manufacturing and sterilization, etc... It is essential the technique of constant output for high added value device. A design target of driving system for low pressure UV lamp of conversion efficiency is 90[%], UV lamp of output stability within ${\pm}7.5[%]$, and lamp power is over 200[W]. The results meet the target of this study well, and have a benefit of domestic market occupation and enable to export. And if protection circuits were developed, it increases the stability of a electronic ballast for UV lamps.

Changes in the Pelvic Posture and Low Back Pressure Pain Threshold in Response to Smartphone Use in the Sitting Position: A Cross-sectional Study (앉은 자세에서 스마트폰 사용에 따른 골반 자세 및 허리 압력통증역치의 변화: 단면 연구)

  • Dae-Hee Lee;Hye-Joo Jeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.113-119
    • /
    • 2023
  • PURPOSE: This study aimed to determine the effects of using a smartphone in the sitting position on the pelvic posture and the low back pressure pain threshold (PPT). METHODS: Thirty participants (15 women and 15 men) were recruited for this study. The participants were asked to sit in a normal sitting position without using a smartphone, followed by sitting while watching a video using a smartphone. The pelvic posture was measured using the back range of motion II (BROM II) device and a palpation meter. We measured PPT using the digital pressure algometer. RESULTS: Pelvic posterior tilting was significantly greater when sitting while using a smartphone relative to sitting without using a smartphone (p < .05). There was no significant difference in the height of the iliac crest when sitting while using a smartphone compared to sitting without using a smartphone (p > .05). The PPTs of L1, L3, and L5 were significantly lower when sitting while using a smartphone relative to sitting without using a smartphone (p < .05). CONCLUSION: Based on these results, it can be concluded that frequent smartphone use while sitting may potentially increase the risk of developing low back problems.

Investigation on Combustion Characteristics of Pressurized Oxy-fuel Combustion System using Low Calorific Value Syngas (저열량 합성가스를 이용한 가압 순산소 연소 시스템의 연소 특성 분석 연구)

  • Kim, Dong-hee;Lee, Young-jae;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2016
  • The aims of this research were to investigate combustion characteristics of lab-scale pressurized oxy-fuel combustion(POFC) system. In this study, the reactor, 800 mm long, was equipped with co-axial burner. Low calorific value syngas that is composed of mainly CO and $H_2$ was used as fuel whereas pure oxygen was used as an oxidant. Thermal heat input to the reactor varied from 2.6 kW to 6.1 kW. The reactor pressure also increases from atmospheric up to 15 bar. The results show that as the pressure increase, the temperature of reactor decreases on the whole in all cases. A significant temperature drop was observed especially at the bottom section of the reactor that exist flame. In addition, the flame instability increases as the pressure increases. Furthermore $NO_x$ emissions increases from atmospheric up to 2 bar. However beyond 2 bar, $NO_x$ emission reduces as pressure increases. Lastly $NO_2$ ratio in $NO_x$ also increases as pressure increases.

An Experimental Study on Low Nox Combustor Performance at High Pressure and Temperature for 20kW Class Microturbines (20kW급 마이크로터빈용 저공해 연소기의 고압고온 성능실험 연구)

  • Yoon, JeongJung;Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.183-190
    • /
    • 2002
  • In order to reduce NOx emissions in the 20kw class microturbines under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and pressure. Air from a compressor with the temperature of 500K to 650K and the pressure of 0.3bar gauge to 0.7bar gauge, was supplied to the combustor through an air preheat-treatment. Sampling exhaust gases were measured at the immediate exit of the combustor. for the effect of temperature on NO and CO emissions. though NOx was increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx and CO were increased also. NOx was decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratios of 0.10 to 0.25 in a lean region. NOx was increased with increasing equivalent ratios, but CO was decreased as an influence of flame temperature. In the very lean region of the equivalent ratio below 0.12, CO was increased suddenly, due to instability. As the results of this study, NOx and CO are found to be reduced to the similar level at the same time when operated at optimal conditions.

  • PDF

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

Critical Heat Flux for Low Flow in Vertical Annulus under Various Pressure Conditions

  • Chun, Se-Young;Jun, Hyung-Gil;Chung, Heung-June;Moon, Sang-Ki;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.386-391
    • /
    • 1997
  • It is important to understand correctly a CHF under low flow condition for the purpose of enhancing the reactor safety and performance in the LWRs. The CHF experiments have been carried out for an internally heated vertical annulus in RCS loop facility. The experimental conditions cover ranges of pressure from 1.82 to 12.08 MPa, mass flux from 300 to 550kg/$m^2$. s and inlet subcooling of 210kJ/kg. The CHF data decrease with increasing pressure at high value of mass flux. For mass flux of about 300kg/$m^2$. s, the CHF rue little influenced by pressure. The CHF data are correlated well by using the dimensionless heat flux and dimensionless mass flux for a fixed inlet subcooling except the data group of 12.08 MPa. It seems that the Doerffer correlation and Katto correlation overestimate the CHF for low pressure and lower value of mass flux within this experimental ranges. The Bowling correlation gives a better prediction than the other two correlations.

  • PDF

Effect of Air-jet Texturing Conditions on the Physical Properties of Low Melting Polyester/Tencel Composite Yarn (에어제트 텍스처링 조건이 저융점 폴리에스터/텐셀 복합사의 물리적 특성에 미치는 영향)

  • Lee, Sun Young;Yoo, Jae Jung;Choi, Oh Gon;Lee, Si Woo;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Physical properties of the composite yarn using low-melting(LM) polyester/Tencel were investigated with air-jet texturing conditions such as temperature, take-up overfeed, yarn speed and air pressure. Surface morphology, microstructure, tensile property, glossiness were evaluated. Surface morphology of a composite yarn had more damaged and loosened structure according to increase of take-up overfeed, yarn speed and air pressure. Crystallinity was affected by parameters such as temperature, yarn speed, take-up overfeed and air pressure and especially, yarn speed was most effective for increase of crystallinity. Also, it was found that temperature and air pressure had significantly affected tensile properties of a composite yarn. The glossiness of yarn increased with increase of temperature, yarn speed and air pressure.

Evaluation of the Residual Strength of CFRP Composite Pressure Vessel After Low Velocity Impact (CFRP 복합재압력용기의 충격후 잔류강도저하특성 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.439-442
    • /
    • 2009
  • In this study, the residual strength of CFRP filament winding pressure vessel after low velocity impact was evaluated quantitatively. After impact test, the pressure vessel was sectioned to produce 25 mm-wide ring specimen and the bursting pressure of this specimen was measured. A finite element model was also fabricated to investigate the deformation and stress distribution characteristics of the impacted CFRP vessel. The degradation of the residual strength along with the increase of impact energy was successfully measured and reviewed.

  • PDF