• Title/Summary/Keyword: Low power systems

Search Result 2,393, Processing Time 0.039 seconds

Cooling Test of The HTS Power Cable (초전도케이블 냉각시험)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

A Study on the load control using electric inertia

  • Kim, Gil-Dong;Park, Hyun-Jun;Han, Young-Jae;Jang, Dong-Yuk;Jo, Jung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.1-128
    • /
    • 2001
  • A propulsion system apparatus is needed for a railroad vehicle to test and estimate propulsion performance. The electrical inertia simulator to facilitate the development and testing of propulsion systems, is presented in this paper. It is based on a vector-controlled Induction motor drive supplied from the AC mains through a double PWM converter that provides desirable features such as hi-directional power folw, nearly unity power factor and low harmonic factor at the Ac mains. A theoretical analysis is first presented, followed by a detailed simulation study to assess the overall system performance under dynamic conditions.

  • PDF

Present State and Development Prospect on the Protective Relaying Under High Resistance Earth Faults in Transmission Systems (송전계통 고저항 지락사고 보호기술 현황 및 개발전망)

  • Lee, Jong-Beom;Kim, Il-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.640-642
    • /
    • 1995
  • This paper describes the present state and development prospect on the protective relaying under high resistance earth faults in transmission systems. Especially it is difficult to detect the fault accompanied with high resistance contary to low resistance. In the complicated power system if the detection is failed, power failure will be occured in large area. New technology with respect to such a problem must be developed. This paper introduces research and development trend in home and abroad.

  • PDF

APPLICATION OF A FUZZY EXPERT MODEL FOR POWER SYSTEM PROTECTION

  • Kim, C.J.;B.Don-Russell
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1074-1077
    • /
    • 1993
  • The objective of this paper is to develop a fuzzy logic based decision-making system to detect low current faults using multiple detection algorithms. This fuzzy system utilizes a fuzzy expert model which executes an operation without complicated mathematical models. This fuzzy system decides the performance weights of the detection algorithms. The weights and the turnouts of the detection algorithms discriminate faults from normal events. This system can also be a generic group decision-making tool for other areas of power system protection.

  • PDF

Applications and Challenges of Lithium-Sulfur Electrochemical Batteries

  • Mohammed Jasim M. Al Essa
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This paper presents applications of lithium-sulfur (Li-S) energy storage batteries, while showing merits and demerits of several techniques to mitigate their electrochemical challenges. Unmanned aerial vehicles, electric cars, and grid-scale energy storage systems represent main applications of Li-S batteries due to their low cost, high specific capacity, and light weight. However, polysulfide shuttle effects, low conductivities, and low coulombic efficiencies signify key challenges of Li-S batteries, causing high volumetric changes, dendritic growths, and limited cycling performances. Solid-state electrolytes, interfacial interlayers, and electrocatalysts denote promising methods to mitigate such challenges. Moreover, nanomaterials have capability to improve kinetic reactions of Li-S batteries based on several properties of nanoparticles to immobilize sulfur in cathodes, stabilizing lithium in anodes while controlling volumetric growths. Li-S energy storage technologies are able to satisfy requirements of future markets for advanced rechargeable batteries with high-power densities and low costs, considering environmentally friendly systems based on renewable energy sources.

A Study on Efficient Friendly Forces Location Data Sharing on Battalion and Below

  • Kim, Hyung-Seok;Shin, Sang-Heon;Kim, Yong-Cheol;Lee, Jeong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.95-101
    • /
    • 2018
  • In this paper, we propose an efficient friendly forces location data sharing algorithm in a troops using a low bandwidth radio. The future battlefield is a 'Network Centric Warfare' with a concept of identifying the position and power of the enemy and friendly forces and leading the battlefield to victory through proper links at the time of our need. One of the basic elements in the 'Network Centric Warfare' is to share friendly forces location data. The bandwidth and transmission rates of radio used in battalion are low. Nevertheless, we should share our locations data almost in real time for effective fighting in a war situation. This paper describes the efficient method of friendly forces location data sharing based on low bandwidth radio. In particular, the concept of 'network-centered warfare' is reflected in the troop below the battalion to present an integrated and efficient way to shared location data of friendly forces.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

Design of a Low Power Self-tuning Digital System Considering Aging Effects (노화효과를 고려한 저전력 셀프 튜닝 디지털 시스템의 설계)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • It has become ever harder to design reliable circuits with each nanometer technology node; under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Therefore, circuit designers need to consider these reliability effects in the early stages of design to make sure there are enough margins for circuits to function correctly over their entire lifetime. However, such an approach excessively increases the size and power dissipation of a system. As the impact of reliability, new techniques in designing aging-resilient circuits are necessary to reduce the impact of the aging stresses on performance, power, and yield or to predict the failure of a system. Therefore, in this paper, a novel low power on-chip self-tuning circuit considering the aging effects has been proposed.

Torque Ripple Reduction of a PM Synchronous Motor for Electric Power Steering using a Low Resolution Position Sensor

  • Cho, Kwan-Yuhl;Lee, Yong-Kyun;Mok, Hyung-Soo;Kim, Hag-Wone;Jun, Byoung-Ho;Cho, Young-Hoon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.709-716
    • /
    • 2010
  • MDPS (motor driven power steering) systems have been widely used in vehicles due to their improved fuel efficiency and steering performance when compared to conventional hydraulic steering. However, the reduction of torque ripples and material cost are important issues. A low resolution position sensor for MDPS is one of the candidates for reducing the material costs. However, it may increases the torque ripple due to the current harmonics caused by low resolution encoder signals. In this paper, the torque ripple caused by the quantized rotor position of the low resolution encoder is analyzed. To reduce the torque ripples caused by the quantization of the encoder signals, the rotor position and the speed are estimated by measuring the frequency of the encoder signals. In addition, the compensating q-axis current is added to the current command so that the 6th order torque harmonic is attenuated. The reduction of torque ripples by applying the estimated rotor position and the compensated q-axis current is verified through experimental results.

Actual Conditions of Voltage and Current Harmonics on Low-voltage Power Systems Supplying Various Facilities (각종 시설물 전원계통의 전압과 전류고조파 실태)

  • Lee, Bok-Hee;Baek, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.62-70
    • /
    • 2005
  • This paper presents the actual conditions and reform measures of voltage and current harmonics being made in low-voltage power systems supplying various loads. The measurements were carried out at the secondary output terminals of 22.9[kV]/380[V]220[V] customer's transformers, and the results were discussed on the basis of the comparison with IEEE and IEC harmonics control standards. The voltage THDs of the power systems employed in this survey were less than $5[\%]$ that is considered to be acceptable. On the contrary, the current distortions were significantly greater than the voltage distortions, and the current THDs were distributed over the wide-range from 15.7 to $60.4[\%]$. In particular, the current distortion on the low voltage power lines of office buildings in which many PC and fluorescent lamps are used is remarkably more serious than that of factory facilities. As a result, the voltage distortion factors are observed within the range of its allowable level or less than the limits, but the current distortion factors are significantly greater than the limits of IEEE and IEC standards.