• 제목/요약/키워드: Low order panel method

검색결과 78건 처리시간 0.033초

항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구 (Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft)

  • 박현범;공창덕
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.36-41
    • /
    • 2013
  • 본 연구에서는 복합재 샌드위치 적층판의 저속 충격 해석을 수행하였다. 샌드위치 구조 형상의 스킨은 탄소/에폭시(Carbon-Epoxy) 재질이 채택되었고 코어(Core)의 재질은 폼(Foam)이 적용되었다. 연구의 타당성을 입증하기 위해 관련 문헌에서의 연구 결과에서 제시한 실험 결과와 유한 요소 해석 결과의 비교가 선행되었다. 타당성 검증을 바탕으로 본 연구에서 손상이 시작되는 충격체의 속도를 평가하고, 예측된 충격 속도에서 충격 거동을 분석하기위해 유한요소법을 이용하여 충격 해석을 수행하였다. 샌드위치 복합재 적층판의 충격 해석 결과 예측된 충격 속도에서 손상이 발생함을 확인하였다. 최종 시편 시험 결과와 수치 해석 결과의 비교 값이 잘 일치함을 확인하였다.

터보팬 엔진 나셀용 샌드위치 복합재 구조물의 손상 거동 연구 (Study on Impact Damage Behavior of Turbo Fan Engine Nacelle Sandwich Composite Structure)

  • 공창덕;박현범;이승현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2007
  • 본 연구에서는 터보 팬 엔진 나셀 복합재 구조의 충격 손상에 관한 연구를 수행하였다. 연구 결과의 신뢰성 검증을 위해 선행 연구된 결과와 비교 분석하였다. 샌드위치 구조의 형상은 카본/에폭시 면재와 폼 코어로 형성되어있다. 샌드위치 패널의 유한 요소 해석 결과 해석 결과의 타당성을 확인하였다. 초기 손상이 발생하는 속도가 평가되었고 예측된 속도에서 충격 해석이 수행되었다. 충격 해석 결과 예측된 충격 손상에서 손상이 발생하는 것으로 확인되었다.

  • PDF

축류홴 설계, 성능, 유동/소음 해석 프로그램 개발 (A development of design, performance and flow.noise analysis program)

  • 김창준;백승조;전완호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.43-47
    • /
    • 2001
  • A program to design an axial flow fan, analyze the performance and predict the noise was developed. In order to develop the low noise fan, that program is compulsory. This software is composed of three parts : the geometric design module, the performance analysis module, the fan noise prediction module. In order to analyze the performance, three dimensional vortex panel method is used. The unsteady flow field was analyzed by time-marching free wake method. The unsteady force data is then used in predicting the noise. Farassat's equation is used to predict the noise of fan.

  • PDF

AC PDP에서 고속 어드레싱을 위한 ADR(Address During Reset) 구동 방식 (The ADR(Address During Reset) Driving Method for High-Speed Addressing in an AC-PDP)

  • 송근영;김근수;이석현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.269-273
    • /
    • 2005
  • In order to achieve high efficiency and low cost, new high-speed addressing method is suggested. This can be implemented by reducing the address discharge time lag through the priming effect. This paper suggests a new ADR(Address During Reset) driving method which provides priming particles by a separated driving method without adding auxiliary electrode or auxiliary discharge. The experimental results show an approximately 100ns reduction in the formative delay time of address discharge and a reduction in jitter of over 200ns. Also, due to enough time being available for reset, there was a reduction of about 29$\%$ in linht emitted during the reset period considerably.

한국형 LNG 화물창 멤브레인의 Sheet 배치 최적화 (Optimization of Sheet Arrangement of Membrane Panel in Korean LNG Cargo Containment System)

  • 김영수;함승호;박광필
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.109-117
    • /
    • 2022
  • Membrane panels are installed in LNG cargo-hold in order to endure extremely low temperature LNG. Although there are several types of membranes around the world, Korean LNG cargo containment system is developing to accomplish technology independence from the other countries. The membrane panel of Korean LNG cargo containment system is composed of corrugation and flat sheets which are arranged asymmetrically. It is very important to reduce the number of the type of corrugation sheet because a mold is required as much as the type of the corrugation sheet. Therefore, we proposed an optimization method to minimize the type of the corrugation sheet. For this method, the number of pitches, which is the distance between the centers of two corrugation sheets should be minimized. We also developed optimized arrangement procedure of the flats simultaneously. Finally, the developed optimization program is applied to 174K LNG cargo hold, and the minimum pitch size is found.

공명형 흡음기의 설계인자에 관한 연구 (A Study on the Design Parameter of a Resonance type Absorber)

  • 송화영;이영철;이선기;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.964-968
    • /
    • 2007
  • A helmholtz resonator has been widely used for the purpose of suppressing low frequency noises propagated from various heat and fluid machineries. However, the resonator has demerits that the absorption bandwidth at resonance frequency is very small and a large cavity is necessary. In order to overcome these problems, in this paper, a resonator with perforated panels at the neck and/or in the cavity is proposed. The absorption performances of resonators are measured by two-microphone method and are estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients are agreed well with the corresponding values from the transfer matrix method. By introducing perforated panels at the neck of a resonator, it is shown that the absorption performances and bandwidth have a significant improvement.

  • PDF

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

구조전달소음 최소화를 위한 함정탑재장비의 베이스 설계 (Design of the Base for the Onboard Installed Equipment to Minimize Structure-borne Noise)

  • 한형석;이경현;박성호
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.432-439
    • /
    • 2015
  • In order to reduce the structure borne noise of the equipment sufficiently, its exciting force should be restricted and additional anti-vibration devices such as resilient mount and bellows should be applied. Since the structure borne noise is dependent on the design of the base for the equipment, it is very important to design the base with low vibration. Therefore, in this research, various types of the base design for the shipboard equipment are investigated to reduce the structure borne noise. In order to design the base with low vibration, the exciting force at the center of the gravity of the equipment is firstly defined through the experiment. Using the exciting force identified by experiments, various types of base designs for the typical turbo machine are evaluated by FEM(finite element method) analysis.

통신해양기상위성의 전이궤도 열해석 (TRANSFER ORBIT THERMAL ANALYSIS FOR COMS)

  • 전형열;김정훈;김성훈;양군호
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.48-54
    • /
    • 2008
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

위성의 전이궤도 열해석 (TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE)

  • 전형열;김정훈;김성훈;양군호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF