• Title/Summary/Keyword: Low glass transition temperature

Search Result 168, Processing Time 0.025 seconds

Curing Behaviors of Transparent Aliphatic Epoxy Acrylate by Electron Beam Irradiation (광투과성 지방족 에폭시 아크릴레이트의 전자선 경화 특성 연구)

  • Park, Sang-Yul;Son, Hyemi;Myung, Dongshin;Kim, Myung-Hwa;Seo, Young-Soo
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.302-307
    • /
    • 2013
  • We synthesized aliphatic epoxy acrylate monomer by the reaction of glycerol diglycidyl ether and acrylic acid. The reaction was monitored by FTIR, Raman spectroscopy and $^1H$ NMR. Electron-beam (E-beam) curing behaviors of the synthesized monomer were studied by spectroscopic analysis, glass transition temperature, and tensile properties. We found that curing reaction was complete in a low dosage of ca. 30 kGy. The viscosity of monomer was a low enough for coating without using diluents and the cured sample was highly transparent, indicating that the monomer can be used for an E-beam curable coating material on transparent optical films.

Consolidation and Adhesion of Cellulose Nitrate of Folklore Artifacts in the 19~20th Century (19~20세기 생활민속자료에 사용된 셀룰로오스 나이트레이트의 강화와 접착 연구)

  • Oh, Joon Suk;Lee, Sae Rom;Hwang, Min Young
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.459-470
    • /
    • 2018
  • Cellulose nitrates were used for folklore artifacts(ornamental beads and pipes in hatstrings, frames of eyeglasses, ornamental eyeglass cases, headband ornaments, and jeogori buttons) between the 19th and 20th centuries; however, they are susceptible to cracking, crazing, embrittlement, and crumbling due to deterioration. To consolidate and adhere deteriorated cellulose nitrate folklore artifacts, water-soluble acrylic emulsion adhesives were investigated. For consolidation, Plextol D 498, which has the lowest viscosity in low concentrations, was used. In adhesive films whose glass transition temperature(Tg) is lower than room temperature, the tensile stress and modulus decreased and the strain increased; therefore, the flexibility was high. The Plextol D 498 and Plextol D 498 and Dispersion K 52 films maintained their adhesiveness and flexibility after artificial-sunlight-accelerated ageing, and Plextol D 498 and Dispersion K 52 films hardly caused yellowing. Plextol D 498 was the most stable for accelerating ageing. A low concentration of Plextol D 498 emulsion resulted in the best permeability on the surface of cellulose nitrate, compared with other acrylic emulsions. To prevent ornamental hatstrings from cracking, crazing, embrittlement, and crumbling, a Plextol D 498 emulsion was used. After applying low concentrations(1%, 3%) of the emulsion to consolidate the fragments and high concentration to adhere the fragments, the ornamental hatstrings were protected from crumbling by deterioration, and their fragments were well-adhered. To preserve it from deterioration by oxygen and humidity, the treated ornament was sealed with an oxygen-barrier film using a low-humidity oxygen scavenger.

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

The properties of optical glass of BaO-GeO2-La2O3 system with ZnO (ZnO가 포함된 BaO-GeO2-La2O3 계 광학 유리 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Lee, Youngjin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.208-214
    • /
    • 2019
  • The glass of $BaO-GeO_2-La_2O_3-ZnO$ system with a transmittance of more than 75 % at mid-wave infrared (MWIR) region in the range of $3{\mu}m$ to $5{\mu}m$ is manufactured and its property is evaluated. After selecting construction that can melt glass through flow button test, $BaO-GeO_2-La_2O_3$ system where 10 mol%, 20 mol% of ZnO were added respectively were melted at $1350^{\circ}C$ for 1 hour and $BaO-GeO_2-La_2O_3$ system of glass was manufactured. Among them, with 20 mol% of ZnO, 16 mol% BaO-56 mol% $GeO_2-8mol%$ $La_2O_3-16mol%$ ZnO system of glass was found to has less than $660^{\circ}C$ of glass transition temperature, more than 1.70 of refractive index, and more than 530 of knoop hardness. Therefore, it is concluded that glass of $BaO-GeO_2-La_2O_3-ZnO$ system of glass with 20 mol% ZnO has good melting conditions at low temperatures and excellent optical properties, thus, can be utilized for special optical materials field.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Synthesis and Characterization of a New Photoconducting Poly(siloxane) Having Pendant Diphenylhydrazone for Photorefractive Applications

  • Lee, Sang-Ho;Jahng, Woong-Sang;Park, Ki-Hong;Kim, Nakjoong;Joo, Won-Jae;Park, Dong-Hoon
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.431-436
    • /
    • 2003
  • A new photoconducting polymer, diphenyl hydrazone-substituted polysiloxane, was successfully synthesized by the hydrosilylation method and characterized by FT-IR, $^1$H-NMR, and $^{29}$ Si-NMR spectroscopy. The glass transition temperature (T$_{g}$) of the polysiloxane having pendant diphenyl hydrazone was ca. 62 $^{\circ}C$, which enabled a component of a low-T$_{g}$ photorefractive material to be prepared without the addition of any plasticizers. This polysiloxane, with 1 wt% of $C_{60}$ dopant, showed a high photoconductivity (2.8 ${\times}$ 10$^{-12}$ S/cm at 70 V/${\mu}{\textrm}{m}$) at 633 nm, which is necessary for fast build-up of the space-charge field. A photorefractive composite was prepared by adding a nonlinear optical chromophore, 2-{3-[2-(dibutylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenylidene} malononitrile, into the photoconducting polysiloxane together with $C_{60}$ . This composite shows a large orientation birefringence ($\Delta$n = 2.6 ${\times}$ 10$^{-3}$ at 50 V/${\mu}{\textrm}{m}$) and a high diffraction efficiency of 81 % at an electric field of 40 V /${\mu}{\textrm}{m}$.textrm}{m}$.EX>.

Synthesis of Ion Conducting Polymer Having Low Temperature Characteristics: II. Synthesis and Characterization of Amorphous Polyester (저온특성을 갖는 이온전도성 고분자의 합성 연구: II. 비정형 폴리에스테르의 합성 및 분석)

  • 황승식;조창기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.281-286
    • /
    • 2000
  • A series of amorphous polyesters were synthesized from amorphous polyether and sebacoyl chloride. The structure and competition of the obtained aliphatic polyester were confirmed by $^1$H-NMR and FT-IR. The number average molecular weights (M$_{n}$) of the obtained polymer were ranging from 8000 ~ 15000. These polyesters showed no crystallinity and their glass transition temperatures (T$_{g}$) were around -77$^{\circ}C$. For comparison, aliphatic polyesters were also synthesized from poly(ethylene glycol) (PEG) with M$_{n}$ of 200, 400, and 1000. As the M$_{n}$ of PEG increased, the melting point of the obtained polyester increased, and the crystallinity of the obtained polyester increased showing 8.8%, 16.2%, and 46.7%, respectively.ively.y.

  • PDF

Interfacial Tacky and Adhesive Characteristics between Tire Tread Compounds and Rubber Cement (타이어 트레드 컴파운드와 고무 시멘트 계면의 점착과 접착 특성)

  • Song, Yo Soon;Kim, Kun Ok
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.399-404
    • /
    • 2018
  • This study compared the tackiness and adhesion of different tire tread compounds and rubber cements before and after vulcanization. The tackiness of natural rubber (NR) cement was the highest for all tread compounds before vulcanization, and the decrease in tackiness of NR cements over time was smaller than that of synthetic rubber cements. The tackiness before vulcanization was affected by the glass transition temperature of the rubber used in the cement and the decrease in tackiness over time of NR was smaller compared to that of using the synthetic rubber. The adhesion of NR-based cements after vulcanization was high for NR tread compounds but low for synthetic rubber tread compounds. On the contrary, the adhesion of emulsion (SBR) and solution SBR cements was high on all tread compounds which was shown to be higher when the rate of vulcanization of cement rubber was lower.

Effect of Mixing Ratio of Amphoteric and Anionic Latices on Print Quality of Coated Papers (라텍스의 혼합비율이 도공지 품질에 미치는 영향)

  • 강태근;박규재;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 1999
  • The binder plays important roles in determining the quality of pigment coating. In addition to its primary role of binding the pigment to the base paper, the binder performs several other important functions. The binder, also referred to as the adhesive, is the dominant in the aqueous phase of the formulation. Thus it plays a major role in determining viscosity, rheology, water release, and setting time for the coating. Latices based on styrene-butadiene dominate the market for synthetic paper coating binders. Consumption is high and is expected to increase further due to the present tendeyncy toward high-solids coating. The purpose of this study is understanding the impact of various parameters of latex(i.e. Tg, Particle size) affecting prontabilities and optical properties of the coated papers, as well as providing basic information on the use of amphoteric latex for improving print qualities of coated papers. Recently, amphoteric latices, Which are cationic at low pH's but turn anionic at high pH's have attracted interests of paper scientists and engineers. Therefore we investigated the effect of the Tg(glass transition temperature) and particle size of amphoteric latex on the coating qualities. We also studied the effect of mixing ratios (Amphoteric / Anionic)of latex on the coating qualities. Our results showed that Tg and particle size of amphoteric latex have to be controlled for optimizing coated paper qualities. The formulation consisting of 10 parts of amphoteric latex and 5 parts of anionic latex gave best results in ink receptivity, smoothness, air permeability, opacity and sheet gloss. If the results hold for the industrial paper coatings, the amount of expensive amphoteric latex can be reduced while achieving best available printing quality.

  • PDF