• Title/Summary/Keyword: Low fineness

Search Result 69, Processing Time 0.026 seconds

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Quality Characteristics of White Pan Bread with Cudrania tricuspidata Leaf Powder (꾸지뽕잎 분말을 첨가한 식빵의 품질 특성)

  • Kim, Eunji;Ju, Hyoung-Woog
    • Culinary science and hospitality research
    • /
    • v.22 no.7
    • /
    • pp.173-186
    • /
    • 2016
  • This study was conducted to investigate quality characteristics of white pan bread with Cudrania tricuspidata leaf powder having functional components. Mixograph, pH, TPA, volume, specific volume, moisture, CrumbScan, color value, sensory evaluation and shelf-life test were performed on the white pan bread with Cudrania tricuspidata leaf powder. The obtained results are as follows. Mixogram analysis results showed that the dough with Cudrania tricuspidata leaf powder was suitable for baking quality. The more Cudrania tricuspidata leaf powder was added in the dough, the higher dough pH was and the lower pH values after fermentation and of the final productwere. TPA analysis results showed that higher amounts of Cudrania tricuspidata leaf powder resulted in increased hardness, chewiness, and gumminess of the white pan bread. Volume and specific volume of white pan bread were decreased with increased amounts of Cudrania tricuspidata leaf powder. CrumbScan images showed that fineness of grain, crust thickness, and volume of the bread were significantly different depending on the amount of Cudrania tricuspidata leaf powder. While color value analysis showed that increasing the amount of Cudrania tricuspidata leaf powder resulted in low L and a values. The results of the acceptance test showed that CLP3 had better scores in the appearance and texture characteristics than the control, while taste and overall acceptance were higher in the CLP2 compared with the control. According to the results of the shelf-life test, the white pan bread with 1~2% of Cudrania tricuspidata leaf powder had a significantly lower hardness when compared with the control. It was judged that a lower amount of Cudrania tricuspidata leaf powder could help in maintaining the softness of bread crumbs. Moisture content in the white pan bread decreased with the increased amounts of Cudrania tricuspidata leaf powder, but there were no significant differences among specimens.

A Secure Access Control Model for Privacy Protection using Purpose Classification (사용목적 분류화를 통한 프라이버시 보호를 위한 보안 접근제어 모델)

  • Na Seok-Hyun;Park Seog
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.265-267
    • /
    • 2006
  • 사용목적(Purpose)은 최근 개인 프라이버시 보호와 관련하여 데이타 수집과 수집 후 보안관리에 있어서 중요한 요소로 사용되고 있다. W3C(World Wide Web Consortium)는 데이타 제공자가 자신이 방문한 웹 사이트에 개인정보를 제공하는 것을 통제할 수 있도록 하는 표준을 제시하였다. 그러나 데이타 수집 후 유통과정에서 개인정보에 대한 보안관리에 대한 언급이 없다. 현재 히포크라테스 데이타베이스(Hippocratic Databases), 사용목적기반 접근제어(Purpose Based Access Control)등은 W3C의 데이타 수집 메커니즘을 따르고 있으며, 데이타 수집 후 보안관리에 대하여 사용목적 관리와 접근제어 기법을 사용하여 관리를 하고 있으나 사용목적에 대한 표현과 사용목적 관리의 미흡함으로 인하여 그에 따르는 개인정보의 프라이버시 보호에 있어서 효과적인 해결책을 제시하지 못하고 있다. 본 논문은 사용목적의 표현력을 향상시키면서. 사용목적의 효과적인 관리기법을 제시한다. 또한 개인의 프라이버시 보호를 위한 방법으로 사용목적의 분류화를 통해 최소권한의 원칙을 따르는 접근제어 기법을 제시한다. 본 논문에서는 사용목적을 상속적, 시간적 그리고 독립적 구조로 분류화하였으며, 이렇게 분류화된 사용목적에 대한 각기 다른 관리기법을 제시한다. 또한 접근제어의 유연성을 위해 RBAC의 역할계층 구조를 사용하였으며, 일의 최소 단위인 태스크(task)의 최소권한을 얻기 위한 조건으로 몇몇 특성의 사용목적을 사용하여 만족할 경우 태스크를 처리하기 위한 기존 모델보다 향상된 최소사용권한을 제공하는 기법을 제시한다. Interference Contrast)에 의한 내부구조 관찰이 최종 동정기준이 되어야할 것으로 나타났다.cillus로 구성되었다. 한편, DAL세균군(42균주)은 high G+C 및 low G+C gram positive 계통군 이외에도 proteobacteria -subdivision에 속하는 Afipia와 Ralstonia, proteobacteria -subdivision에 속하는 Variovorax, proteobacteria $\beta$-subdivision에 속하는Pseudomonas로 구성되어 계통학적으로 다양한 세균임이 확인되었다. 40%까지 대체가 가능하였으며, 아울러 높은 라이신 부산물의 대체 수준에 있어서 사료효율과 단백질 전환효율을 고려한다면 아미노산 첨가(라이신과 아르지닌)와 중화 효과에 좋은 결과가 있을 것으로 사료된다.의한 적정 양성수용밀도는 각고 5~6cm 크기의 경우 10~15개체가 적합하였다. 수증별 성장은 15~20 m 수층에서 빨랐으며, 성장촉진과 폐사를 줄이기 위해서는 고수온이 지속되는 7~10월에는 20~30m수층으로 채롱을 내려 양성하고 그 외 시기에는 15 m층 내외가 좋은 것으로 나타났다. 상품으로 출하 가능한 크기 인 각고 10 cm이상, 전중량 140 g 내외로 성장시 키기까지는 채묘후 22개월이 소요되었고, 출하시기는 전중량 증가가 최대에 이르는 3월에서 4월 중순이 경제적일 것으로 판단된다.er 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the

  • PDF

Engineering Performance of Extruded Fly Ash Cement Panel with Bottom Ash (잔골재로서의 바텀애시를 사용한 플라이애시 시멘트 압출경화체의 공학적 특성)

  • Lee, Myeong-Jin;Kim, Jin-Man;Han, Dong-Yeop;Choi, Duck-Jin;Lee, Keun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • The aim of this research is providing the fundamental data for treating and recycling the byproducts by using the wet processed bottom ash as a fine aggregate replacement for cement-based extruded panel. Although the cement-based extruded panel was used mainly as a cladding component with its high strength and outstanding durability, it was hardly spread because of low economic feasibility due to the high cost of additives or fibers which were used to achieve 14 MPa of flexural strength as a cladding material. As a solution of this drawback, by the previous research, it was possible to replace cement by fly ash up to 80 % by decreasing quality criteria with restricting the application to indoor purpose. In this research, based on the previous research, by using the bottom ash as a replacement of fly ash, improvement of shape retention performance is tried. As a result of the experiment on evaluating the optimum content and PSD of bottom ash, as the fineness modulus and content of bottom ash was increased, the extruding performance was decreased and penetration resistance was increased. Additionally, the optimum content and the maximum particle size was found as 20 %, and 0.3 mm, respectively.

An Experimental Study on the Influence of High Quality Fly ash and Water-Binder Ratio on Properties of the Ternary System Concrete (3성분계 콘크리트의 특성에 미치는 고품질 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Seung-Min;Kim, Dong-Sool;Rho, Hyoung-Nam;Jung, Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.877-880
    • /
    • 2008
  • Recently the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high quality fly ash remains at a low level. Accordingly, this study was to establish 8000 class of fineness of fly ash and three levels of substitute like 15%, 3 0%, and 45% in order to analyze the replacement ratio and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, it increased the fluidity in a fresh state, and it decreased the air content. This study has found out the setting acceleration and reduction of heat of hydration. As for the strength property in a set state, this study has shown the tendency of being equal or higher in age 28 days.

  • PDF

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF