• Title/Summary/Keyword: Low doping

Search Result 508, Processing Time 0.027 seconds

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

The Effect of the Deposition Temperature and la Doping Concentration on the Properties of the (Pb, La)$\textrm{TiO}_3$ Films Deposited by ECR PECVD (증착온도와 La조성비가 ECR 플라즈마 화학기상증착법으로 증착한 (Pb, La)$\textrm{TiO}_3$박막의 물성에 미치는 영향)

  • Jeong, Seong-Ung;Park, Hye-Ryeon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • Perovskite lanthanum doped lead titanate ($(Pb,La)TiO_{3}$ or PLT) thin films were successfully fabricated on Pt/TijSiO.iSi substrates at the temperatures as low as $440~500^{\circ}C$ by eleclron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVII). Since the volatilities of the MC sources arid oxide molecules (especially Ph oxide) increased with increasing deposition temperature, the film deposition rate and the (I'b + La)/'Ti ratio decreased Stoichiometric perovskite PL'T films with good dielectric and leakeage current properties were obtained at the temperatures of $460~480^{\circ}C$. The lanthanum content of the film was nearly directly propotional to $La(DPM)_{3}$ flow rate. As the La/Ti ratio increased from 3.0 to 9.5%, the dielectric constant increased from 360 to 650 and the leakeage current density at 100kV/cm electric field decreased from $4{\times}10^{-5}$ to $4{\times}10_{-8}A/cm^2$.

  • PDF

Infrared Spectroscopic Evidences for the Superconductivity of $La_2CuO_4$-related Compounds: A Superconductivity Probe

  • Park, Jeong Cheol;Jo, Seon Woog;Jeong, Jong Hak;Jeong, Gi Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1041-1043
    • /
    • 2000
  • We present the effects of temperature (between 10 K and 298 K) and of hole concentration on the frequency and intensity of characteristic phonons in polycrystalline $La_2CuO_4-related$ compounds using FT-IR spectros-copy. The influences of the concentration of carrier doped on the phonon modes are prominent in the IR spectra of $La_2CuO_4-related$ compounds. For $La_2-xSrxCuO_4({\chi}=$ 0.00, 0.03, 0.07, 0.10, and 0.15) and electrochemically (or chemically) oxidized $La_2CuO_4$, the intensities of the transverse oxygen mode around 680cm $-^1$ which cor-responds mainly to Cu-O(1) stretching vibration in the basal plane of CuO6 octahedron, are decreased and dis-appeared depending on the Sr-substitution rate and the amount of excess oxygen, while the longitudinal oxygen mode around 510 cm $-^1$ corresponding to the Cu-O(2) stretching in the basal plane of CuO6 octahedron are near-ly invariable. In particular, after two cycles of cooling-heating between 10 K and 298 K for these sample, the phonons around 680 cm $-^1$ are blue shif 13-15 cm $-^1$, while the phonons around 510 cm $-^1$ are nearly constant. The introduction of the charge carrier by doping would give rise to the small contraction of CuO6 oc-tahedron as Cu $^3+$ requires a smaller site than Cu $^2+$, which results in the shortening of the Cu-O(1) bond length and Cu-O(2) bond length with the increased La-O(2) bond length. These results in the frequency shift of the characteristic phonons. The IR spectra of $La_2Li0.5Cu0.5O_4$ which exhibits an insulator behavior despite the $Cu^3+$ of nearly 100%, corroborate our IR interpretations. The mode around 710 cm $-^1$ corresponding to Cu-O(1) stretching vibration is still strongly remained even at low temperature (10 K). Thus, we conclude that the con-duction electrons formed within $CuO_2$ planes of $La_2CuO_4-related$ superconductors screen more effectively the transverse oxygen breathing mode around 680 $cm-^1$ depending on the concentration of the doped charge carrier in $La_2CuO_4-related$ compounds, which might use as a superconductivity probe.

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

Study on the characteristics of transition metals for TSSG process of SiC single crystal (SiC 단결정의 TSSG 공정을 위한 전이금속 특성 연구)

  • Lee, Seung-June;Yoo, Yong-Jae;Jeong, Seong-Min;Bae, Si-Young;Lee, Won-Jae;Shin, Yun-Ji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.55-60
    • /
    • 2022
  • In this study, a heat treatment experiment was conducted to select a new melt composition that can easily control the unintentionally doped nitrogen (N-UID) without degrading the SiC single crystal quality during TSSG process. The experiment was carried out for about 2 hours at a temperature of 1900℃ under Ar atmosphere. The used melt composition is based on either Si-Ti 10 at% or Si-Cr 30 at%, and also Co or Sc transition metals, which are effective for carbon solubility, were added at 3 at%, respectively. After the experiment, the crucible was cross-sectionally cut, and evaluated the Si-C reaction layer on the crucible-melt interface. As a result, with Sc addition, Si-C reaction layers uniformly occurred with a Si-infiltrated layer (~550 ㎛) and a SiC interlayer (~23 ㎛). This result represented that the addition of Sc is an effective transition metal with high carbon solubility and can feed carbon sources into the melt homogeneously. In addition, Sc is well known to have low reactivity energy with nitrogen compared to other transition metals. Therefore, we expect that both growth rate and Nitrogen UID can be controlled by Si-Sc based melt in the TSSG process.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Effects of an $Al_2$O$_3$Surfasce Protective Layer on the Sensing Properties of $SnO_2$Thin Film Gas Sensors (Al$_2$O$_3$ 표면 보호층이 박막형 $SnO_2$ 가스센서의 감지 특성에 미치는 영향)

  • Seong, Gyeong-Pil;Choe, Dong-Su;Kim, Jin-Hyeok;Mun, Jong-Ha;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.778-783
    • /
    • 2000
  • Effects of the $Al_2$O$_3$surface protective layer, deposited on the SnO$_2$sensing layer by aerosol flame deposition (AFD) method, on the sensing properties of SnO$_2$thin film ags sensors were investigated.Effects of Pt doping to the $Al_2$O$_3$surface protective layer on the selectivity of CH$_4$ gas were also investigated. 0.3$\mu\textrm{m}$ thick SnO$_2$thin sensing layers on Pt electrodes were prepared by R.F. magnetron sputtering with R.F. power of 50 W, at working pressure of 4mTorr, and at 20$0^{\circ}C$ for 30 min. $Al_2$O$_3$surface protective layers on SnO$_2$layers were prepared by AFD using a diluted aluminum nitrade (Al(NO$_3$).9$H_2O$) solution. The sensitivity of CO gas in the SnO$_2$gas sensor with an $Al_2$O$_3$surface protective layer was significantly decreased. But that of CH$_4$gas remained almost same with pure SnO$_2$gas sensor. This result shows that the selectivity of CH$_4$gas is increased because of the $Al_2$O$_3$surface protective layer. In the case of SnO$_2$gas sensors with Pt-doped $Al_2$O$_3$surface protective layers, low sensing property to CO gas and high sensing property to CH$_4$were observed. This results in the increasing of selectivity of CH$_4$gas selectivity are discussed.

  • PDF