• 제목/요약/키워드: Low carbon vehicles

검색결과 61건 처리시간 0.026초

호주 Olympic Dam 사례를 바탕으로 한 MT 기반 심부 지하 광물자원 탐사의 국내 적용성 (Domestic applicability of MT-based deep underground resource exploration based on the Australia Olympic Dam case)

  • 정동호;류경호;오석훈
    • 산업기술연구
    • /
    • 제41권1호
    • /
    • pp.21-24
    • /
    • 2021
  • In this study, the development and production of electric vehicles and hydrogen vehicles are presented as a method for realizing carbon-neutral. Accordingly, the demand and need for development of underground metal mineral resources such as copper and nickel has increased. The research was carried out using MT survey, which is very useful for deep exploration such as mineral resources and oil exploration because of it's low cost and explorable depth. In Korea, there are very few cases of MT exploration in terms of mineral development, so the study was conducted based on the MT exploration conducted previously in AusLAMP, Australia. Through comparative analysis of the MT exploration data conducted to identify the ore body in the deep area of the Olympic Dam in Australia, with the data directly calculated in 2D inversion, it was confirmed that it can have a positive effect on the possibility of resource development and carbon neutrality using MT exploration in Korea.

자동차 산업 발전을 위한 저탄소차 협력금제도에 대한 연구 (A study on low carbon car subsidy for automotive industry development)

  • 맹해양;정준화
    • 통상정보연구
    • /
    • 제16권4호
    • /
    • pp.247-261
    • /
    • 2014
  • 본 연구는 최근 논란이 되고 있는 '저탄소차 협력금제도'에 대해 살펴보고자 한다. 제도 도입의 취지와 목적, 필요성 등을 통해 자동차 산업 발전을 위한 대안은 무엇인지 제시하고자 하였다. 저탄소차 협력금제도의 도입은 차량구입비용에 큰 변화를 가져옴으로써 차량구매관행을 크게 변화시킬 수 있으며, 이를 통해 차량에서 배출되는 온실가스의 감축 효과를 기대할 수 있을 것으로 예상된다. 그러나 제도의 성공적 정착을 위해서는 무엇보다도 국민들이 공감할 수 있는 적절한 수준에서 보조금-부담금 구간 설정이 이루어져야 할 것이다. 또한 제도 시행 이전에 자동차 관련 기존 세제에 대한 조정, 부담금의 분할 징수 등의 방안에 대해서도 충분한 검토가 있어야 할 것으로 여겨진다. 자동차 제작사의 경우 제도시행 시점까지 수입차와 동등한 수준의 이산화탄소 배출량을 기록할 수 있도록 기술개발에 최선을 다해야 할 것이며, 정부 역시 이러한 노력에 대한 지원을 강화해야 할 것이다.

  • PDF

GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구 (A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel)

  • 한흥삼
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

탄소섬유 복합차체의 낙뢰에 대한 안전성 분석 (Safety Analysis of Carbon Composite-body Against Lightning Strikes)

  • 김성욱;박대원;길경석;목재균;한주섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.321-326
    • /
    • 2008
  • Light weight of vehicles by composite materials makes possible high speed, energy saving, and low repair cost. As Bimodal Tram and Tilting Train eXpress(TTX) use carbon composite material for their bodies, safety for passengers and electrical devices against unexpected failures has been issued more than ever. Lightning strike which generates high voltages and large currents is the worst case for the safety of passengers and devices. With this background, we experimentally investigated the insulation breakdown phenomena on carbon composite materials by the application of lightning surge voltage and current. From the experimental results, we could estimate whether the composite body is safe or not for the inside passengers and devices against lightning strikes.

  • PDF

탄소섬유 에폭시 복합재료 중공축의 연삭 특성에 관한 연구 (A Study on the Grinding Characteristics of Carbon Fiber Epoxy Composite Hollow Shafts)

  • 김포진;이대길;한흥삼;이동주
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.36-45
    • /
    • 1999
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles, spindles of machine tools and rollers for film manufacturing. However, the molded composite shafts are not usually accurate enough for mechanical machine elements, which require turning or grinding of composite hollow shafts. In this paper, the grinding characteristics of composite hollow shafts, which are flexible in the radial and circumferential directions, were investiaged experimentally and analytically with respect to the stacking angle, thickness and outer diameter.

  • PDF

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

모사 합성 가솔린 제조 및 분무 특성 분석 연구 (Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics)

  • 박정현;최나은;박수한
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

지하주차장 내 수소연료차의 수소 방출시 가연체적에 관한 수치해석적 연구 (A numerical analysis study on the flammable volume by leakage of hydrogen fuel vehicles in parking lot)

  • 이호형;김효규;유지오;김두영
    • 한국터널지하공간학회 논문집
    • /
    • 제23권6호
    • /
    • pp.439-449
    • /
    • 2021
  • 최근 온실가스 저감과 더불어 저탄소배출 정책 등 환경오염에 관심이 증대되고 있다. 이에 따라 탄소배출을 저감할 수 있는 수소전지자동차를 비롯한 친환경 자동차의 보급률이 증가하고 있어 이에 대한 방재 및 안전관련 대책에 요구되고 있는 실정이다. 본 연구에서는 지하주차장의 장소에 국한하여 환기조건에 따라 수소연료자동차의 방출 시 수소의 농도 분포에 대한 위험정도를 수치해석을 통해 분석하였다. 그 결과, 수소탱크가 1개만 방출 될 경우 지하주차장 내 수소의 가연체적비는 최대 8.6%로 나타났으며, 환기가 지속적으로 이루어짐에 따라 연소가능한 수소의 체적비율은 150초 이후 1% 미만으로 감소되는 것으로 분석되어 기계적인 환기가 필수적인 것으로 분석되었다. 수소탱크 3개가 동시방출 또는 단계방출의 경우 최종적인 수소의 가연체적비율은 유사하지만 단계적으로 지연 방출함에 따라 방출 초기 수소의 가연체적비율의 증가폭이 낮은 것으로 나타났으며, 이에 따른 수소탱크 방출 시나리오의 추가적인 연구가 필요한 것으로 예상된다.

70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구 (A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle)

  • 김청균;김도현
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

Stack Performances of Proton Exchange Membrane Fuel Cell

  • Kho, Young-Tai;Cho, Won-Ihl;Park, Yong-Woo-
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.14-16
    • /
    • 1994
  • The development of proton exchange membrane fuel cells(PEMFCs) with high energy efficiencies and high power densities is gaining momentum because their performance characteristics are attractive for terrestrial(power sources for electrical vehicles, stand-by power), space and underwater application[1]. Fuel cells are capable of running on non-petroleum fuels such as methanol, natural gas or hydrogen and also have major impact on improving air quality. They virtually eliminate particulates, NO$_{x}$, SO$_{x}$, and significant reduce hydrocarbons and carbon monoxide. Especially, fuel cell-battery hybrid power sources appear to be well suited to overcome both the so-called battery problem(low energy density) and the fuel cell problem(low power density)[2].[2].

  • PDF