• 제목/요약/키워드: Low aspect ratio wing

검색결과 17건 처리시간 0.017초

익동체(翼胴體)의 공력탄성학적특성(空力彈性學的特性)에 관한 연구(硏究) (On the Aeroelastic Characterisrics for the Flight Vehicle of Wing-Body Combination)

  • 이해경
    • 대한조선학회지
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 1973
  • This paper shows the method for obtaining the body flutter velocity and frequency for flight body which consists of low aspect ratio wing and body combination by assuming slender body of cylinderical shell structure. The stiffness matrix of the cylinderical shell is represented from Donnel eq. by the finite difference method, and also unsteady aerodynamic influence matrix is represented by the Doublet Lattice Method of Albano & Rodden. The flutter matrix can be obtained from those matrices.

  • PDF

비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산 (Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method)

  • 이태승;박승오
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1039-1048
    • /
    • 2008
  • 본 논문에서는 새로운 비선형 와류격자법 계산 과정이 제안된다. 기존의 계산 과정은 자유와의 형태 계산을 위해 내부 반복계산 및 하향이완법을 포함한다. 하지만 본 논문에서는 유사 정상 개념에 기초한 새로운 수식을 제안하여 자유와의 형태를 계산함으로써, 계산 과정에서 내부 반복계산 및 하향이완법을 생략한다. 또한 반복계산이 진행됨에 따라 각 분절에 유도되는 유속도를 적절히 평균해 줌으로써 알고리듬의 수치적 안정성을 향상시킨다. 그리고 낮은 종횡비 날개에 대한 수치실험을 수행하여 분절의 길이, 와류중심반경, 후류영역 계산범위 등과 같은 중요 인자들의 적절한 기준을 경험적으로 결정한다.

저속 비행 3차원 유연날개 정적 공력-구조 연계해석 (Static Aerodynamics-Structure Coupling Analysis of a 3D Flexible Wing Flying at Low Speed)

  • 한형석;박주희;이나원;한철희
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.1-6
    • /
    • 2015
  • 태양광 고고도 장기체공형 무인기나 인간동력 항공기 등에 사용되는 높은 종횡비를 가진 유연날개는 공력 및 구조 상호작용으로 인하여, 구조적 비선형 처짐 및 양력감소 등의 문제가 발생한다. 본 연구에서는 저속 비행하는 높은 종횡비를 가진 날개의 단방향 공력-구조 연계해석을 수행하였다. XFOIL을 사용하여 공력천이현상을 포함한 저 레이놀즈수 익형 공력특성 자료 확보를 기반으로 3차원 양력선 이론을 사용하여 공력해석 연구를 수행했다. 구조해석은 상용소프트웨어 ANSYS를 사용하여 구조변형이나 응력해석 연구를 수행했다. 단방향 공력-구조 연계해석 결과를 바탕으로 인간동력 항공기 주 날개의 형상설계 연구를 수행했다.

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

고고도 장기체공무인기 주익 Spar 비선형 구조 해석 (Non-linear Structural Analysis of Main Wing Spar of High Altitude Long Endurance UAV)

  • 박상욱;신정우;이무형;김태욱
    • 한국항공운항학회지
    • /
    • 제23권1호
    • /
    • pp.24-29
    • /
    • 2015
  • In order to increase endurance flight efficiency of long endurance electric powered UAV, main wing of UAV should have high aspect ratio and low structural weight. Since a spar which consists of thin and slender structure for weight reduction can cause catastrophic failure during the flight, it is important to develop verification method of structural integrity of the spar with the light weight design. In this paper, process of structural analysis using non-linear finite element method was introduced for the verification of structural integrity of the spar. The static strength test of the spar was conducted to identify structural characteristic under the static load. Then, the experimental result of the spar was compared to the analytical result from the non-linear finite element analysis. It was found that the developed process of structural analysis could predict well the non-linear structural behavior of the spar under ultimate load.

고고도 장기체공 태양광 무인기 개발 (Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV))

  • 황승재;김상곤;이융교
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.