• Title/Summary/Keyword: Low Temperature Shift

Search Result 199, Processing Time 0.03 seconds

Analysis on the Relationship between the Korean Temperature and the Atmospheric Circulation over the Northern Hemisphere during Winter (우리나라 겨울철 기온과 북반구 대기 순환과의 상관성 분석)

  • Lim, So-Min;Yeh, Sang-Wook;Kim, Gong-Rae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2012
  • This study investigates the relationship between the Korean temperature and the atmospheric circulation such as Arctic Oscillation, Siberian High and Aleutian Low during the winter (December-January) for the period of 1970-2011. It is found that all indices to represent aforementioned circulations are significantly correlated with Korean winter temperature for the period of 1970 - 2011. There are marked contrasts in such relationship, however, before and after the mid-1980s when a significant regime shift of Korean winter temperature occurred. While Korean winter temperature has a close relationship with Arctic Oscillation after the mid-1980s, its relationship with Siberian High and Aleutian Low is weakened. The composite analysis between a positive and negative phase of Arctic Oscillation before and after the mid-1980s is conducted to examine a recent strengthening of Arctic Oscillation-Korean winter temperature relationship. It is found that the structural changes of low-level wind and the geopotential height at 500 hPa between the two phases of Arctic Oscillation are more effective to influence Korean winter temperature after the mid-1980s. This may induce a close relationship between the Korean winter temperature variability and Arctic Oscillation after the mid-1980s compared to before the mid-1980s.

Water Gas Shift Reaction Using the Commercial Catalyst Pellets from the Gases by Waste Plastic Gasification (폐플라스틱 가스화에 의한 가스로부터 상용 촉매 펠릿을 이용한 수성가스 전환 반응)

  • JI-MIN YUN;YOUNG-SUB CHOI;JIN-BAE KIM;JIN-BAE KIM;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2023
  • The water gas shift reaction was carried out using the commercial catalyst pellet and the simulated gases expected to occur from waste plastic gasification. In the water gas shift reaction, the high temperature shift reaction and the low temperature shift reaction were continuously performed with CO:H2O ratio of 1:2, 1:2.5, and 1:3, and the CO conversion and H2 increase rate were evaluated. The H2 increase rate increased in order to CO:H2O ratio of 1:3 > CO:H2O ratio of 1:2.5 > CO:H2O ratio of 1:2. The CO conversion showed a high value of more than 97% at each CO:H2O ratio. The water gas shift reaction at a CO:H2O ratio of 1:3 showed the highest H2 increase rate and CO conversion.

Dielectric cap quantum well disordering for band gap tuning of InGaAs/InGaAsP quantum well structure using various combinations of semiconductor-dielectric capping layers (다양한 반도체-유전체 덮개층 조합을 이용한 InGaAs/InGaAsP 양자우물의 무질서화)

  • 조재원;이희택;최원준;우덕하;김선호;강광남
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.207-211
    • /
    • 2002
  • Band gap tuning by quantum well disordering in $In_{0.53}Ga_{0.47}As/InGaAsP(Q1.25)$ quantum well structure has been investigated using photoluminescence. The threshold temperature for the blue shift was about $750^{\circ}C$ , and the blue shift became larger as the annealing temperature increased. $SiO_2$ showed saturation as the annealing temperature increased. $SiN_x$caused larger blue shift than $SiO_2$, which is considered to be related to the low growth temperature of $SiN_x$. The diffusion of P and Ga are thought to be responsible for the blue shift of the $SiN_x$ and $SiO_2$capped quantum well disordering , respectively.

Temperature compensated operation for small trichromatic LED backlight (소형 3파장 LED 백라이트의 온도 보상 구동)

  • Lee, Dong-Woo;Park, Mu-Youn;Hwang, Soo-Ryong;Kim, Jin-Ha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.33-39
    • /
    • 2006
  • Trichromatic LED backlight renders higher colour gamut and panel transmittance to the LCDs than the phosphor-converted white LED backlight. In realization, however, several technical challenges arise, such as colour shift, due to the ambient temperature change, brightness decrease along with the temperature increase, colour mixing, minimizing the total number of chips and so on. In this paper we designed and tested the low cost temperature compensating circuit, using a thermistor as a temperature compensating element, for stabilizing the brightness and maintaining the colour coordinates of the trichromatic backlight units. By applying the temperature compensating circuit, the decrement rate of the brightness and colour shift rate were achieved by 54% and 51% respectively comparing with uncompensated case.

Investigation of the High Temperature Shift for a Generation of High Purity Hydrogen (고순도 수소생산을 위한 고온전이 반응 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.157-160
    • /
    • 2008
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$ (steam) followed by water gas shift (WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift (HTS) and a low temperature shift (LTS). In a typical operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about 3~5%. The HTS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to a range of 2~4%. The iron based catalysts (G-3C) was used for the HTS to convert the most of CO in the effluent from the partial oxidation (POX) to $H_2$ and $CO_2$ at a relatively high rate. Parametric screening studies were carried out for variations of the following variables: reaction temperature, steam flow rate, components ratio ($H_2/CO$), and reforming gas flow rate.

Improvement of Device Characteristic on Solution-Processed InGaZnO Thin-Film-Transistor (TFTs) using Microwave Irradiation

  • Moon, Sung-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.249-254
    • /
    • 2015
  • Solution-derived amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFTs) were developed using a microwave irradiation treatment at low process temperature below $300^{\circ}C$. Compared to conventional furnace-annealing, the a-IGZO TFTs annealed by microwave irradiation exhibited better electrical characteristics in terms of field effect mobility, SS, and on/off current ratio, although the annealing temperature of microwave irradiation is much lower than that of furnace annealing. The microwave irradiated TFTs showed a smaller $V_{th}$ shift under the positive gate bias stress (PGBS) and negative gate bias stress (NGBS) tests owing to a lower ratio of oxygen vacancies, surface absorbed oxygen molecules, and reduced interface trapping in a-IGZO. Therefore, microwave irradiation is very promising to low-temperature process.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Solid State $^{27}Al$, $^{29}Si$ MAS NMR Spectroscopic Studies on Crystallization of ZSM-5 Synthesized at Low Temperature and Atomospheric Pressure (저온상압에서 합성된 Na,TPA-ZSM-5의 결정화에 관한 Solid State $^{27}Al$$^{29}Si$ MAS NMR 분광학적 고찰)

  • Yun, Young Ja;Ha, Jae Mok
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.10
    • /
    • pp.656-662
    • /
    • 1996
  • Using low temperature and atmospheric pressure method, we synthesized Na, TPA-ZSM-5 with Si/Al ratio of about 100. We employed 27Al and 29Si MAS NMR spectroscopy and FT-IR to investigate the crystallization process as a function of time. The chemical shift depends on the initial composition of reactants and changes during the course of synthesis different from those reported by others earlier. However, the chemical shift of our final product showed in the range of typical ZSM-5. And the defect site was removed by the calcine. From XRD and SEM data, the formation of ZSM-5 was also confirmed.

  • PDF

Attrition Characteristics of Catalysts for a High Efficiency Water Gas Shift Process (고효율 수성가스 공정을 위한 촉매 마모 특성)

  • Jo, Jun Beom;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.111-114
    • /
    • 2010
  • In the attrition reactor for the American Society for Testing and Materials (ASTM) D5757-95, the attrition characteristics of catalysts for water gas shift reaction were investigated. The effects of attrition characteristics of low temperature shift catalysts (LTS) and high temperature shift catalysts (HTS) on fluidization phenomena and average particle size were investigated and compared with the attrition characteristics of sand particles. The particle size of catalysts was decreased and particle size distribution in attrition tube was changed due to the effect of gas injection. About 40~50 wt% samples of original catalyst particles were entrained and lost. The amount of fly ash of LTS catalyst was less than that of HTS. Also, the weight of entrained particles which had original particle size of $212{\sim}300{\mu}m$ was lower than any other cases.

Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalyst optimization for water gas shift reaction (WGS 반응용 Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ 촉매 최적화)

  • Jeong, Dae-Woon;Kim, Ki-Sun;Eum, Ic-Hwan;Lee, Sung-Hun;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • WGS(Water Gas Shift)반응은 일산화탄소(CO)를 이산화탄소($CO_2$)로 전환하는 반응으로 일체형 수소생산시스템의 실현을 위한 고순도 수소생산에 있어서 중요한 단계이다. WGS 반응은 열역학적 평형을 고려하여 고온전이반응(HTS: High Temperature Shift)과 저온전이반응(LTS: Low Temperature Shift) 두 단계 반응으로 진행된다. 두 단계 공정의 통합을 위해 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 개발이 필요하다. 최근 낮은 온도에서 높은 활성을 갖는 귀금속 촉매에 다양한 담체를 적용시킨 연구가 활발히 진행되고 있다. 선행 연구 결과, Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 특성 변화를 관찰하였다. 따라서 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 제조를 위해 환원성 담체인 $CeZrO_2$에 Pt 을 담지시켜 성능을 평가하였다. 제조된 모든 담체는 공침법(Co-precipitation)으로 제조 하였으며 $500^{\circ}C$에서 6시간 소성하였다. 제조된 담체에 백금(Pt)을 함침법(Incipient Wetness Impregnate)으로 담지시켰다. 특성분석은 BET를 이용하여 표면적을 측정하였다. 촉매 반응 실험조건은 $200^{\circ}C{\sim}400^{\circ}C$ 온도범위에서 기체공간속도(GHSV: Gas Hourly Space Velocity) 45,000 ml/$h{\cdot}g-cat$ 으로 혼합가스($H_2$:60%, $N_2$:20%,$CH_4$:1%,CO:9%,$CO_2$:10%)를 흘려 반응 후 배출되는 가스를 Micro-Gas Chromatography 를 이용하여 측정하였다.

  • PDF