Attrition Characteristics of Catalysts for a High Efficiency Water Gas Shift Process

고효율 수성가스 공정을 위한 촉매 마모 특성

  • Jo, Jun Beom (Department of Chemistry, KAIST) ;
  • Kim, Jae Ho (Korea Institute of Energy Research, Gasification Research Center) ;
  • Lee, See Hoon (Korea Institute of Energy Research, Gasification Research Center)
  • 조준범 (KAIST 화학과) ;
  • 김재호 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 이시훈 (한국에너지기술연구원 청정화석연료연구센터)
  • Received : 2009.08.07
  • Accepted : 2009.10.13
  • Published : 2010.02.10

Abstract

In the attrition reactor for the American Society for Testing and Materials (ASTM) D5757-95, the attrition characteristics of catalysts for water gas shift reaction were investigated. The effects of attrition characteristics of low temperature shift catalysts (LTS) and high temperature shift catalysts (HTS) on fluidization phenomena and average particle size were investigated and compared with the attrition characteristics of sand particles. The particle size of catalysts was decreased and particle size distribution in attrition tube was changed due to the effect of gas injection. About 40~50 wt% samples of original catalyst particles were entrained and lost. The amount of fly ash of LTS catalyst was less than that of HTS. Also, the weight of entrained particles which had original particle size of $212{\sim}300{\mu}m$ was lower than any other cases.

ASTM D5757-95에 따른 마모 반응기를 이용하여 수성 가스 반응에 사용되는 촉매들의 마모 특성을 고찰하였다. 저온 수성가스 촉매와 고온 수성가스 촉매들의 유동 현상, 입자 크기에 따른 영향을 고찰하였고 이에 따른 입도 분포 변화를 측정하였으며 유동층 매체로 이용되는 모래와 마모 특성을 비교하였다. 마모관 내부에서 기체 주입에 따른 마모가 일어나 촉매의 입자 크기가 감소하고 분포가 변화되었다. 또한 초기 촉매 입자 층의 40~50%에 해당하는 양이 비산되어 배출되었다. 촉매 종류별 비교로부터 저온 수성가스 촉매가 고온 수성가스 촉매보다 비산량이 적음을 알 수 있었고, 초기 촉매 입자의 크기별 비교로부터 초기 입도가 $212{\sim}300{\mu}m$에 해당하는 경우에 비산량이 상대적으로 적음을 알 수 있었다.

Keywords

References

  1. J. G. Lee and S. H. Lee, KIC News, 11, 26 (2008)
  2. S. H. Lee, J. G. Lee, J. H. Kim, and Y. C. Choi, Fuel, 85, 803 (2006) https://doi.org/10.1016/j.fuel.2005.08.039
  3. www.gasification.org
  4. NETL, Hydrogen from coal program, Department of Energy, USA (2008)
  5. S. C. Kim, M. J. Youn, and Y. N. Chun, Transactions of the KSME B, 31, 855 (2007) https://doi.org/10.3795/KSME-B.2007.31.10.855
  6. S. K. Lim, J. M. Bae, and S. W. Nam, Transactions of the KSME B., 30, 850 (2006) https://doi.org/10.3795/KSME-B.2006.30.9.850
  7. Y. S. Oh, T. Y. Song, Y. S. Baek, and L. S. Chol, Tans. of the Korea Hydrogen and New Energy Society, 13, 313 (2002)
  8. S. H. Lee, C. S. Park, J. G. Lee, and J. H. Kim, J. Korean Ind. Eng. Chem., 19, 295 (2008)
  9. S. H. Lee, S. D. Kim, J. S. Kim, and J. M. Lee, J. Korean Ind. Eng. Chem., 17, 547 (2006)
  10. S. H. Lee and S. D. Kim, Ind. Eng. Chem. Res., 43, 1090 (2004) https://doi.org/10.1021/ie0302903
  11. J. Werther and W. Xi, Powder Technology, 76, 39 (1993) https://doi.org/10.1016/0032-5910(93)80039-D
  12. J. Werther and J. Reppenhagen, Siemens Westinghouse Power Corporation, Pittsburgh, PA, USA, 435 (1999)
  13. S. Y. Wu, J. Baeyens, and C. Y. Chu, Can. J. Chem. Eng., 77, 738 (1999)
  14. H. Kage, K. Kawaji, H. Ogura, and Y. Matsuno, J. Chem. Eng. Jpn., 33, 605 (2000) https://doi.org/10.1252/jcej.33.605