• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,084, Processing Time 0.028 seconds

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Mathematical Models to Describe the Kinetic Behavior of Staphylococcus aureus in Jerky

  • Ha, Jimyeong;Lee, Jeeyeon;Lee, Soomin;Kim, Sejeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • The objective of this study was to develop mathematical models for describing the kinetic behavior of Staphylococcus aureus (S. aureus) in seasoned beef jerky. Seasoned beef jerky was cut into 10-g pieces. Next, 0.1 mL of S. aureus ATCC13565 was inoculated into the samples to obtain 3 Log CFU/g, and the samples were stored aerobically at $10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$ for 600 h. S. aureus cell counts were enumerated on Baird Parker agar during storage. To develop a primary model, the Weibull model was fitted to the cell count data to calculate Delta (required time for the first decimal reduction) and ${\rho}$ (shape of curves). For secondary modeling, a polynomial model was fitted to the Delta values as a function of storage temperature. To evaluate the accuracy of the model prediction, the root mean square error (RMSE) was calculated by comparing the predicted data with the observed data. The surviving S. aureus cell counts were decreased at all storage temperatures. The Delta values were longer at $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ than at $30^{\circ}C$ and $35^{\circ}C$. The secondary model well-described the temperature effect on Delta with an $R^2$ value of 0.920. In validation analysis, RMSE values of 0.325 suggested that the model performance was appropriate. S. aureus in beef jerky survives for a long period at low storage temperatures and that the model developed in this study is useful for describing the kinetic behavior of S. aureus in seasoned beef jerky.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.