• Title/Summary/Keyword: Low Temperature Metal Catalyst

Search Result 93, Processing Time 0.028 seconds

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy (Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Oxidation characterization of VOCs(volatile organic compounds) over pt and ir supported catalysts (Pt와 Ir을 담지한 촉매에 의한 휘발성유기화합물들의 산화특성)

  • Kim, Moon-Chan;Yoo, Myong-Suk
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.130-138
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. Catalytic oxidation in VOCs can give high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. Xylene, toluene and methyl ethyl ketone (MEK) were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS and TEM analysis. Result reveal that Pt catalyst has higher conversion than Ir catalyst and Pt-Ir bimetallic catalysts. The existence of multipoint actives in, Pt-Ir bimetallic catalysts gives improved performance for the Pt metalstate. Bimetallic catalysts have higher conversion for VOCs than monometallic ones. The addition, VOCs oxidation follows first order kinetics. The addition of small amount of Ir to Pt promotes oxidation conversion of VOCs.

Effect of ZnCl2 Co-catalyst in the Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol by Using Base Catalysts (염기 촉매를 이용한 디메틸카보네이트 합성에서 ZnCl2 조촉매의 영향)

  • Kim, Dong-Woo;Park, Moon-Seok;Kim, Moon-Il;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.217-222
    • /
    • 2012
  • The synthesis of dimethyl carbonate(DMC) is a promising reaction for the use of naturally abundant carbon dioxide. DMC has gained considerable interest owing to its versatile chemical reactivity and unique properties such as high oxygen content, low toxicity, and excellent biodegradability. In this study, the synthesis of DMC through the transesterification of ethylene carbonate(EC) with methanol was investigated by using ionic liquid and metal oxide catalysts. The screening test of different catalysts revealed that choline hydroxide ([Choline][OH]) and 1-n-butyl-3-methyl imidazolium hydroxide([BMIm][OH]) had better catalytic performance than metal salts catalysts such as MgO, ZnO and CaO. The effects of reaction parameters such as reaction temperature, MeOH/EC mole ratio, and carbon dioxide pressure on the reactivity of [Choline][OH] catalyst were discussed. High temperature and high MeOH/EC mole ratio were favorable for high conversion of EC. However, the yield of DMC showed a maximum when carbon dioxide pressure was 1.34 MPa, and then it decreased for higher carbon dioxide pressure. Zinc chloride($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the EC conversion and DMC yield probably due to the acid-base properties of the catalysts.

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent (石油化學 廢觸媒로부터 過酸化水素를 還元劑로이용한 有價金屬의 황산침출)

  • 박경호;손정수;김종석
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.20-26
    • /
    • 2001
  • Sulfuric acid leaching of Mn, Co and Fe from spent petrochemical catalyst was performed using hydrogen peroxide as a reducing agent. Low extraction of Mn, Co and Fe was obtained by only sulfuric acid. When hydrogen peroxide were added as a reducing agent, the high extraction of these metals could be obtained. Different from ordinary leaching, the extraction per-centages of metal components decreased with elevating leaching temperature in this process. Under the optimum condition, the extraction percentages of Mn, Co and Fe were 93.0% , 87.0% and 100% respectively.

  • PDF

Experiment of DME autothermal reforming with CGO-based catalysts (CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구)

  • Choi, Seunghyeon;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.

Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide Support (Al-Ce 산화물에 담지된 CuO 촉매상에서 저온 CO산화반응)

  • Park, Jung-Hyun;Yun, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • CuO(x)/0.3Al-0.7Ce catalysts with different CuO loadings (x = 2~20 wt%) were prepared by impregnation method and investigated the effects of CuO loadings on the low temperature CO oxidation. Of the used catalysts, the CuO(10)/0.3Al-0.7Ce catalyst showed the highest catalytic performance in the absence or presence of water vapor. In the presence of water vapor, the catalytic performance was drastically decreased, with a temperature of 50% CO conversion ($T_{50%}$) shifted to higher temperature by $50^{\circ}C$ compared to the those in dry conditions because of the competitive adsorption of water vapor on the active sites. The copper metal surface area calculated from $N_2O$-titration analysis and the oxygen capacity from CO-pulse experiments were increased with the CuO loadings and showed a maximum at 10 wt%CuO/0.3Al-0.7Ce catalyst. These trends are in good agreement with the tendency of $T_{50%}$ of the catalysts. From these characteristic aspects, it could be deduced that the catalytic performance was closely related to the oxygen capacity and the copper metallic surface area.