• Title/Summary/Keyword: Low Switching Frequency

Search Result 644, Processing Time 0.027 seconds

Reduction of switching loss and low-order harmonics in three-phase PWM inverter using the selected harmonic elimination (특정고조파제거기법을 이용한 3상 PWM 인버터의 저차고조파제거 및 스위칭손실 저감에 관한 연구)

  • Jang, Chul;Lee, Byung-Jin;Yun, Jae-Sung;Suh, Yoon-Chul;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1960-1962
    • /
    • 1998
  • Reference/modulating waveform continuity is not a necessary condition for the implementation of switching patterns for three-phase pulse-width modulated(PWM) converters. This is based on the fact that the converter phase-voltages do not need to be sinusoidal and switching pattern discontinuities do not degrade the quality of output/input voltage/current waveforms by introducing low-order harmonics if certain parameters are optimized. This paper introduces the selected harmonic elimination to reduce the switching frequency and low-order harmonics compared with continuous PWM techniques and some discontinues switching patterns for PWM converter.

  • PDF

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

The Single Phase Converter of Power Factor Collection Type with Simple Switching Method (간이 스위칭법에 의한 단상 역률개선형 컨버터)

  • 문경희;고강훈;김은수;곽동걸;조판제;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.323-326
    • /
    • 1999
  • For decrease the harmonic current components of the power source, a first method is insert the choke coil that used the choke input type rectifier, the booster chopper circuit and buck chopper circuit. And the several method are studying like as the PWM(Pulse Width Modulation) converter and the active filter type which is used the high frequency switching and the sinusoidal wave formed input current. In this type, there are many problem as a low efficiency, increased the noise, the high leakage current and cost up by the high frequency switching. For improve this problems, the partial resonan method is used on the booster inducter and lossles snubber condenser. This method decreased the distortion factor has lower harmonic components than the hard switching and there is no switching loss by the ZCS(Zero Current Switching) at switch turn-on and the ZVS(Zero Voltage Swithcing) at switch turn-off

  • PDF

Optimal Hysteresis Control for CCM Driving of a Single-Stage PFC Flyback Converter for LED Lightings (LED 구동용 단일단 PFC CCM 플라이백 컨버터의 히스테리시스 최적 제어)

  • Kim, Choon-Tack
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.586-592
    • /
    • 2016
  • The current control of Continuous Conduction Mode(CCM) can be implemented by several methods: peak current control; average current control; and hysteresis control. Among these methods, the hysteresis current control is popularly applied in various converter applications because of its simplicity of implementation, fast current control response and inherent peak current limiting capability. However, a current controller with conventional hysteresis band which multiplies the current reference has the disadvantage that the modulation frequency varies in one cycle of the input voltage and, as a result, generates high switching frequency in the low input voltage section. Also it is complicated to design the input filter due to varying switching frequency. This paper proposed an optimum hysteresis-band current control method where the band is generated by using both multiplication method and sum method to maintain the modulation frequency to be nearly constant. This approach can solve the high switching frequency in the low input voltage section, and achieve easy design of input filter. The performance of the proposed converter is verified with the simulation and the experimental works.

Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter (Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴)

  • Jeong, Bo Chang;Kim, Sun-Pil;Kim, Kwang Soo;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

PMSM Sensorless Control using a General-Purpose Microcontroller (범용 마이크로콘트롤러를 이용한 PMSM 센서리스 제어)

  • Kang, Bong-Woo;La, Jae-Du;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.227-235
    • /
    • 2011
  • This paper describes a PMSM control algorithm for realizing a low-cost motor drive system using a general purpose microcontroller. The proposed sensorless algorithm consists of the current observer and the sensorless scheme based on instantaneous reactive power. Also the control board system is not the high-cost DSP(digital signal processor) system but the general purpose microcontroller and it allows to reduce the unit cost of the motor system. However the clock frequency of the proposed microcontroller is one-fifths for the clock frequency of the DSP. In addition, the switching frequency must be selected as the lower frequency because of complex mathematic modeling of the sensorless algorithm. the low switching frequency augments the noise of the motor and might make accurate speed control impossible. Thus this paper proposes the optimization method to supplement the drawback of the general purpose microcontroller and the usefulness of the proposed method is verified through the experiment.

Optimal Switching Parameter Control of Semi-Active Engine Mount

  • Truong, Thanh Quoc;Ahn, Young-Kong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1-4
    • /
    • 2005
  • This paper describes work on isolation of vibration related engine by a hydraulic engine mount with controllable area of inertia track. Automotive engine mounts are required to constrain motion of engine shake resulting from low-frequency road input of shock excitation and also to isolate noise and vibration generated by the engine with unbalanced disturbance at the high frequency range. The property of the mount depends on vibration amplitude and excitation frequency, which means that the excitation amplitude is large in low excitation frequency range and small in high frequency range. In this paper, theoretical works with model of the mount to reduce vibrations related engine were conducted. The volumetric stiffness of the mount is greatly changed according to the switching the area of the inertia track. Therefore, when the area of the inertia track is tuned, the transmissibility of the mount is effectively reduced.

  • PDF

High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Swit (IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.460-465
    • /
    • 1998
  • Due to high power ratings and low conduction loss, the IGBT has become more attractive in switching power supplies. However, its turn-on and turn-off characteristics cause severe switching loss and switching frequency limitation. This paper proposes 2.4kW, 48V, high efficiency half-bridge DC-DC converter using paralleled IGBT-MOSFET switch concept, where each of IGBT and MOSFET plays its part during on-periods and switching instants. The switching loss is analyzed by using the linearized model and the opteration of the converter are investigated by simulation results.

  • PDF

Zero-Voltage-Switching High Frequency Inverter for Electrodeless Fluorescent Lamp (무전극 램프 구동용 영전압 스위칭 고주파 인버터에 관한 연구)

  • Park, Dong-Hyun;Kim, Hee-Jun;Joe, Kee-Yun;Kye, Mun-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.113-119
    • /
    • 1998
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes the driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

Optimal Design of Resonance Frequency for LLC Converter

  • Chung, Bong-Geun;Moon, Sang-Cheol;Jin, Cheng-Hao
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.159-160
    • /
    • 2015
  • Recently, it is increased to use the portable device with small size. It is also increasing for demand of a small size adapter. To reduce the size of components, switching frequency has to be increased. But it causes higher switching loss and temperature of components. Especially, the temperature of adapter must be limited because adapter can be easily touched when portable device is being charged. To reduce temperature of adapter, high efficiency is essential. To solve this problem, this paper proposes design of resonance frequency optimization for LLC converter with high efficiency and low temperature of passive components.

  • PDF