• Title/Summary/Keyword: Low Specific Speed

Search Result 256, Processing Time 0.026 seconds

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

A Study on the Efficient m-step Parallel Generalization

  • Kim, Sun-Kyung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.13-16
    • /
    • 2005
  • It would be desirable to have methods for specific problems, which have low communication costs compared to the computation costs, and in specific applications, algorithms need to be developed and mapped onto parallel computer architectures. Main memory access for shared memory system or global communication in message passing system deteriorate the computation speed. In this paper, it is found that the m-step generalization of the block Lanczos method enhances parallel properties by forming m simultaneous search direction vector blocks. QR factorization, which lowers the speed on parallel computers, is not necessary in the m-step block Lanczos method. The m-step method has the minimized synchronization points, which resulted in the minimized global communications compared to the standard methods.

  • PDF

A Behavior of the Diffuser Rotating Stall in a Low Specific Speed Mixed-Flow Pump

  • Miyabe, Masahiro;Furukawa, Akinori;Maeda, Hideaki;Umeki, Isamu;Jittani, Yoshinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • The flow instability in a low specific speed mixed-flow pump, having a positive slope of head-flow characteristics was investigated. Based on the static pressure measurements, it was found that a rotating stall in the vaned diffuser occurs at about 65% flow rate of best efficiency point (BEP). A dynamic Particle Image Velocimetry (DPIV) measurement and the numerical simulations were conducted in order to investigate the flow fields. As a result, the diffuser rotating stall was simulated even by Computational Fluid Dynamics (CFD) and the calculated periodic flow patterns agree well with the measured ones by DPIV. It is clarified that a periodical large scaled backflow, generated at the leading edge of the suction surface of the diffuser vane, causes the instability. Furthermore, the growth of the strong vortex at the leading edge of the diffuser vane induces the strong backflow from the diffuser outlet to the inlet. The scale of one stall cell is covered over four-passages in total thirteen vane-passages.

A Study on the Design of a High-Speed Heddle Frame (고속 직기용 복합재료 헤들 프레임의 설계에 관한 연구)

  • Lee, Chang-Seop;O, Je-Hun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.250-263
    • /
    • 2001
  • The up and down speed of heddle frames that produce woven cloth by insertion of weft yarns between warp yarns has been increased recently much for productivity improvement, which induces higher inertial stresses and vibrations in the heddle frame. the heddle frame is required to reduce its mass because the heddle frame contributes the major portion of the stresses in the heddle frames during accelerating and decelerating. Conventional aluminum heddle frames have fatigue life of around 5 months at 550rpm due to their low fatigue flexural strength as well as low bending stiffness. In this work, since carbon/epoxy composite materials have high specific fatigue strength(S/p), high specific modulus(E/p), high damping capacity and sandwich construction results in lower deflections and higher buckling resistance, the sandwich structure composed of carbon/epoxy composite skins and polyurethane foam were employed for the high-speed heddle frame. The design map for the sandwich beams was accomplished to determine the optimum thickness and the stacking sequences for the heddle frames. Also the effects of the number of ribs on the stress of the heddle frame were investigated by FEM analyses. Finally, the high-speed heddle frames were manufactured with sandwich structures and the static and dynamic properties of the aluminum and the composite heddle frames were tested and compared with each other.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

A Study on Force-Reflecting Interface using Ultrasonic Motros (초음파모터를 이용한 역감장치에 관한 연구)

  • 강원찬;김대현;김영동
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper describes the evaluation of a force-reflecting interface with ultrasonic motors(USMs). The force-reflecting interface allows a human to feel object within virtual environment. To effectively display the mechanical impedance of the human hand we need a haptic device with specific characteristics, such as low inertia, almost zero friction and very high stiffness. USMs have attracted considerable attention as the actuator satisfied these conditions. USMs combine features such as high driving torque at low rotational speed, high holding torque and fast response therefore we studied two degree of freedom force-reflecting haptic system.

  • PDF

P-RAM 기술의 전망

  • Jeong Hong-Sik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.21-40
    • /
    • 2006
  • [ ${\Box}$ ] Opportunities for PRAM Nearly ideal memory characteristics Potential for high density & low cost memory ${\Box}$ Technical Challenges Writing current reduction is the most urgent issue. ${\to}$ chalcogenide, programming volume, current density, heat loss control Improvement of writing speed, reliability ${\Box}$ Prospects (PRAM as a Mainstream Memory) Evenn, We have demonstrated 256Mb PRAM Realization of high density and low cost PRAM with good reliability will be key succss factor. We need to develop PRAM specific applications.

  • PDF

An Estimating Algorithm of Vehicle Collision Speed Through Images of Blackbox (블랙박스 영상 분석을 통한 차량 충돌 속도 연산 알고리즘에 대한 융복합 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.173-178
    • /
    • 2018
  • The vehicle collision speed in mid and high range can be checked by EDM(Event Driven memory) data recorded when the air bag works. But it's difficult to estimate the low speed of vehicle collision. And estimating the speed is important because the injury level can be changed by the impact speed. The study proposed an estimating algorithm by analysing the images recorded in car blackbox instrument. Low speed rear collision accidents simulated with wire winding motor for various vehicle types. The study estimated the impact speed with the ratio of the distance change between two vehicles and the length change of the number plate of front vehicle. The closer the vehicles are, the larger the plate length is. You can estimate the impact speed with the ratio. The impact speed is calculated with the initial distance for a specific length of number plate in the algorithm. The results can be applied to the linear rear collision because the angle of impact was not considered in this study.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

Low-Power and Low-Hardware Bit-Parallel Polynomial Basis Systolic Multiplier over GF(2m) for Irreducible Polynomials

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.570-581
    • /
    • 2017
  • Multiplication in finite fields is used in many applications, especially in cryptography. It is a basic and the most computationally intensive operation from among all such operations. Several systolic multipliers are proposed in the literature that offer low hardware complexity or high speed. In this paper, a bit-parallel polynomial basis systolic multiplier for generic irreducible polynomials is proposed based on a modified interleaved multiplication method. The hardware complexity and delay of the proposed multiplier are estimated, and a comparison with the corresponding multipliers available in the literature is presented. Of the corresponding multipliers, the proposed multiplier achieves a reduction in the hardware complexity of up to 20% when compared to the best multiplier for m = 163. The synthesis results of application-specific integrated circuit and field-programmable gate array implementations of the proposed multiplier are also presented. From the synthesis results, it is inferred that the proposed multiplier achieves low power consumption and low area complexitywhen compared to the best of the corresponding multipliers.