• Title/Summary/Keyword: Low Reynolds

Search Result 697, Processing Time 0.03 seconds

A Study on the Flow around the Circular Cylinder at Low Reynolds Number (저 Reynolds수 에 있어서의 원통주위의 흐름에 관한 연구)

  • 이은선;송강섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.2
    • /
    • pp.43-63
    • /
    • 1985
  • As a circular cylinder has a comparatively simple shape and becomes a basic problem for flows around other various shapes of bodies, the problem of two-dimensional viscous flow around the circular cylinder has been investigated, both theoretically and experimentally. But not a few problems are left unsolved. It is well known that the calculations are successfully made with the approximations of Stokes or Oseen for very low Reynolds numbers, but as Reynolds number is increased, Oseen's approximations as well as Stokes's ones become more and more remote from the exact solution of the Navier-Stokes equations. Therefore, in this paper, the authors transform the Navier-Stokes equations into the finite difference equations in the steady two-dimensional viscous flow at Reynolds number up to 45, and then solve the solution of the Navier-Stokes equations numerically. Also, the authors examine the accuracy of the solution by means of flow visualization with aluminum powder. The main results are as follows; (1) The critical Reynolds number at which twin vortices begin to form in the rear of the circular cylinder is found to be 6 in the experiment and 4 in the numerical solution. (2) As Reynolds number is increased, it is proved that the ratio of the length of the twin vortices to the diameter is grown almost linearly, both experimentally and numerically. (3) Separation angle is also increased according to reynolds number. But it is found that it would converge into 101.3 degrees, both experimentally and numerically.

  • PDF

Lift Enhancement and Drag Reduction on an Airfoil at Low Reynolds Number using Blowing and Distributed Suction

  • Chao, Song;Xudong, Yang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • An active flow control technique using blowing and distributed suction on low Reynolds airfoil is investigated. Simultaneous blowing and distributed suction can recirculate the jet flow mass, and reduce the penalty to propulsion system due to avoiding dumping the jet mass flow. Energy is injected into main flow by blowing on the suction surface, and the low energy boundary flow mass is removed by distributed suction, thus the flow separation can be successfully suppressed. Aerodynamic lift to drag ratio is improved significantly using the flow control technique, and the energy consumption is quite low.

THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW (저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율)

  • An, Sang-Joon;Choi, Jong-Hyeok;Maeng, Joo-Sung;Han, Cheol-Heui
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

Performance of Contra-Rotating Propellers for Stratospheric Airships

  • Tang, Zhihao;Liu, Peiqing;Sun, Jingwei;Chen, Yaxi;Guo, Hao;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.485-492
    • /
    • 2015
  • Small advance ratio and low Reynolds number of stratospheric propulsion system bring lots of challenges to the design of propellers. Contra-rotating propeller configuration is proposed to improve the propulsion efficiency. In this paper, the feasibility of contra-rotating propeller for stratospheric airship has been assessed and its performance has been investigated by wind tunnel tests. The experimental results indicate, at relatively low Reynolds number, although the advance ratio is fixed, the performance of propellers is different with variation of Reynolds number. Moreover, at the same Reynolds number, the efficiency of contra-rotating propeller achieved appears to be a few percent greater than that for a standard conventional propulsion system. It can be concluded that contra-rotating propellers would be an efficient means to improve the performance of stratospheric airship propulsion system.

NUMERICAL SOLUTIONS OF AN UNSTEADY 2-D INCOMPRESSIBLE FLOW WITH HEAT AND MASS TRANSFER AT LOW, MODERATE, AND HIGH REYNOLDS NUMBERS

  • AMBETHKAR, V.;KUSHAWAHA, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.89-107
    • /
    • 2017
  • In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement. The present numerical results indicate that, as we move along the horizontal line through the geometric center of the domain, we observed that, the heat and mass transfer decreases up to the geometric center. It, then, increases symmetrically.

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

Numerical Study on Aerodynamic Characteristics of Flapping-Airfoil in Low Reynolds Number Flows (저 레이놀즈수 유동에서 Flapping-Airfoil의 수치적 공력특성 연구)

  • Lee, Jung-Sang;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Aerodynamic characteristics of a flapping airfoil in low Reynolds number flows are numerically studied using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation of unsteady flows over flapping airfoil, the flow solver is parallel-implemented by MPI programming method Unsteady computations are performed for low Reynolds number flows over a NACA four-digit series airfoils. Effects of pitching, plunging, and flapping motion with different reduced frequency, amplitude, thickness and camber on aerodynamic characteristics are investigated. Present computational results yield a better agreement in thrust at various reduced frequency with experimental data.

Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient (약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF