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ABSTRACT. In this paper, we have proposed a modified Marker-And-Q¢AC) method to
investigate the problem of an unsteady 2-D incompressibie With heat and mass transfer
at low, moderate, and high Reynolds numbers with no-slipsdipdboundary conditions. We
have used this method to solve the governing equations aldthgthe boundary conditions
and thereby to compute the flow variables, vizvelocity, v-velocity, P, T', andC'. We have
used the staggered grid approach of this method to disertt& governing equations of the
problem. A modified MAC algorithm was proposed and used tomamthe numerical solu-
tions of the flow variables for Reynolds numbdts = 10, 500, and50000 in consonance with
low, moderate, and high Reynolds numbers. We have also ygedm@iate Prandtl®r) and
Schmidt G¢) numbers in consistence with relevancy of the physical leralzonsidered. We
have executed this modified MAC algorithm with the aid of a pater program developed and
run in C compiler. We have also computed numerical solutadscal Nusselt V) and Sher-
wood (Sh) numbers along the horizontal line through the geometritezeat low, moderate,
and high Reynolds numbers for fixdti- = 6.62 and Sc¢ = 340 for two grid systems at time

t = 0.0001s. Our numerical solutions fox andv velocities along the vertical and horizontal
line through the geometric center of the square cavityRer= 100 has been compared with
benchmark solutions available in the literature and it lesfound that they are in good agree-
ment. The present numerical results indicate that, as weralong the horizontal line through
the geometric center of the domain, we observed that, thedmebmass transfer decreases up
to the geometric center. It, then, increases symmetrically

1. INTRODUCTION

The problem of 2-D unsteady incompressible viscous fluid fidthh heat and mass trans-
fer has been the subject of intensive numerical computtiomecent years. This is due to
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its significant applications in many scientific and engimagpractices. Fluid flows play an
important role in various equipment and processes. Ungtdalincompressible viscous flow
coupled with heat and mass transfer is a complex problemeatt garactical significance.

NOMENCLATURE
At time spacing n pertains to the iteration
Ax  grid spacing along:-axis P dimensionless pressure
Ay  grid spacing along-axis P pressure §/m?)
0 . _ ,
o differentiation along the Q  volumetric flow rate 2 /s)
n
normal to the boundary Ra Rayleigh number
i, 0 pseudo-velocity components in T  dimensionless temperature
y coordinate directions, respectively t non-dimensional time
u,v  dimensionless velocity componentsain t"™  time level aftem iterations

y coordinate directions, respectively 1 viscosity of the fluid (V - m?/s)
1%

V -4 divergence of pseudo-velocity vector kinematic viscosity (rf/s)
V -1 divergence of dimensionless velocity vector Nu  average Nusselt number
u™ a2 component of the dimensionless Sh  average Sherwood number
velocity aftern iterations p fluid density ¢g/m?)
" y component of the dimensionless x,y coordinates
velocity aftern iterations u dimensionless velocity vector
Nu  local Nusselt number C  dimensionless concentration
Pr Prandtl numbery /k D mass diffusivity (n2/s)
Re Reynolds number, ulu Sc  Schmidt numbery /D
i index used in tensor notation j index used in tensor notation
Sh local Sherwood number k thermal diffusivity (n?/s)

This problem has received considerable attention due toutserous engineering prac-
tices in various disciplines, such as storage of radioaativclear waste materials, transfer
groundwater pollution, oil recovery processes, food pssitey, and the dispersion of chem-
ical contaminants in various processes in the chemicalstnguMore often, fluid flow with
heat and mass transfer are coupled in nature. Heat trasstemcerned with the physical
process underlying the transport of thermal energy due @rgperature difference or gradi-
ent. All the process equipment used in engineering prabideeto pass through an unsteady
state in the beginning when the process is started, andr¢helh a steady state after sufficient
time has elapsed. Typical examples of unsteady heat transfer in heat exchangers, boiler
tubes, cooling of cylinder heads in I.C. engines, heatrimeat of engineering components and
guenching of ingots, heating of electric irons, heating aadling of buildings, freezing of
foods, etc. Mass transfer is an important topic with vastugtdal applications in mechani-
cal, chemical and aerospace engineering. Few of the apiphisainvolving mass transfer are
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absorption and desorption, solvent extraction, evaporaif petrol in internal combustion en-
gines etc. Numerous everyday applications such as disgpbfisugar in tea, drying of wood
or clothes, evaporation of water vapor into the dry air,udifbn of smoke from a chimney into
the atmosphere, etc. are also examples of mass diffusiomahy cases, it is interesting to
note that heat and mass transfer occur simultaneously.

Harlow and Welch [1] used the Marker-And-cell (MAC) methaat hiumerical calculation
of time-dependent viscous incompressible flow of fluid whie free surface. This method
employs the primitive variables of pressure and velocist tias practical application to the
modeling of fluid flows with free surfaces. Ghia et al. [3] haged the vorticity-stream func-
tion formulation for the two-dimensional incompressiblailr-Stokes equations to study the
effectiveness of the coupled strongly implicit multi-g(i@SI-MG) method in the determina-
tion of high-Re fine-mesh flow solutions. Issa et al. [5] hagedia non-iterative implicit
scheme of finite volume method to study compressible andrpeessible recirculating flows.
Elbashbeshy [6] has investigated the unsteady mass trdrefea wedge. Sattar [7] has stud-
ied free convection and mass transfer flow through a porowiumepast an infinite vertical
porous plate with time-dependent temperature and coratemtr Sattar and Alam [8] have
investigated the MHD free convective heat and mass trafiskerwith hall current and con-
stant heat flux through a porous medium. Maksym Grzywinskidr&ej Sluzalec [10] solved
the stochastic convective heat transfer equations in fiifferences method. A numerical
procedure based on the stochastic finite differences metiasddeveloped for the analysis of
general problems in free/forced convection heat transfee. [11] has studied fully developed
laminar natural convection heat and mass transfer in agligrtieated vertical pipe. Chiriac
and Ortega [12] have numerically studied the unsteady flavtesat transfer in a transitional
confined slot jet impinging on an isothermal plate. De ancaJa¥] have numerically studied
natural convection around a tilted heated square cylindpt ik an enclosure has been studied
in the range ofl000 < Ra < 1000000. Detailed flow and heat transfer features for two dif-
ferent thermal boundary conditions are reported. Chiu.4iL&] proposed an effective explicit
pressure gradient scheme implemented in the two-levebkteggered grids for incompressible
Navier-Stokes equations. Xu et al. [16] have investigakedttansition to a periodic flow in-
duced by a thin fin on the side wall of a differentially heatadity. Lambert et al. [17] studied
the heat transfer enhancement in oscillatory flows of Neiatoand viscoelastic fluids. Al-
harbi et al. [18] presented the study of convective heat aassritransfer characteristics of an
incompressible MHD visco-elastic fluid flow immersed in aqus medium over a stretching
sheet with chemical reaction and thermal stratificatioraf. Xu et al. [20] have investigated
the unsteady flow with heat transfer adjacent to the finneehgd of a differentially heated
cavity with conducting adiabatic fin. Fang et al. [21] haveestigated the steady momentum
and heat transfer of a viscous fluid flow over a stretchingikhrg sheet. Salman et al. [22]
have investigated heat transfer enhancement of nano flasirfl micro constant heat flux.
Hasanuzzaman et al. [23] investigated the effects of Lewislrer on heat and mass trans-
fer in a triangular cavity. Schladow [24] has investigatedilbatory motion in a side-heated
cavity. Lei and Patterson [25] have investigated unsteadyral convection in a triangular en-
closure induced by absorption of radiation. Ren and Wan li26E proposed a new approach
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to the analysis of heat and mass transfer characteristitarfinar air flow inside vertical plate
channels with falling water film evaporation.

The above mentioned literature survey pertinent to thegmtgzroblem under consideration
revealed that, to obtain high accurate numerical solutmfthe flow variables, we need to
depend on high accurate and high resolution method like taifired Marker-And-Cell (MAC)
method, being proposed in this work. Furthermore, a modMeédC algorithm is employed
for computing unknown variables, v, P, T', andC simultaneously.

What motivated us is the enormous scope of applications steady incompressible flow
with heat and mass transfer as discussed earlier. Literatuwey also revealed that, the prob-
lem of 2-D unsteady incompressible flow with, heat and massster in a rectangular domain,
along with slip wall, temperature, and concentration baumdonditions has not been studied
numerically. Furthermore, it has also been observed thatetis no literature to conclude
availability of high accurate method that solves the gowveyequations of the present problem
subject to the initial and boundary conditions. Moreoueiider to investigate the importance
of the applications enumerated upon earlier, there is a teeddtermine numerical solutions
of the unknown flow variables. In order to fulfil this requirem, we present numerical an
investigation of the problem of unsteady 2-D incompressfliw, with heat and mass transfer
in a rectangular domain, along with slip wall, temperataned concentration boundary con-
ditions, using the modified Marker-And-Cell (MAC) methodhdugh there is a well known
MAC method for solving the problem of 2-D fluid flow, we presensuitably modified MAC
method as well as a modified MAC algorithm to compute the ateunumerical solutions of
the flow variables to the problem considered in this work.

Our main target of this work is to propose and use the modifiadkist-And-Cell (MAC)
method of pressure correction approach to investigate blelgm of unsteady 2-D incom-
pressible flow with heat and mass transfer. We have propasgdiged this method to solve
the governing equations along with no-slip and slip walltary conditions and thereby to
compute the flow variables. We have used a modified MAC algorior discretizing the gov-
erning equations in order to compute the numerical solstmfrthe flow variables at different
Reynolds numbers in consonance with low, moderate, and Nighhave executed this modi-
fied MAC algorithm with the aid of a computer program devebtbpad run in C compiler. We
have also computed numerical solutions of local NuggE€lt) and Sherwood.Sh) numbers
along the horizontal line through the geometric centerwf fnoderate, and higRe, for fixed
Pr = 6.62 andSc = 340 for two grid systems at time= 0.0001s.

The summary of the layout of the current work is as followscti®a 2 describes mathemati-
cal formulation that includes physical description of thelgem, governing equations, and ini-
tial and boundary conditions. Section 3 describes the neatiMarker-And-Cell method, along
with the discretization of the governing equations. Secfi@escribes a modified Marker-And-
Cell (MAC) algorithm, along with numerical computationsecion 5 discusses the numerical
results. Section 6 illustrates the conclusions of thisystukection 7 provides validity of our
computer code used to obtain numerical solutions with tmet@ark solutions.
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2. MATHEMATICAL FORMULATION

2.1. Physical Description. Fig. 1 illustrates the geometry of the problem considerethiis
study along with no-slip and slip boundary conditions. ABG[ rectangular domain around
the point(1.0, 0.5) in which an unsteady 2-D incompressible viscous flow witht laea mass
transfer is considered. Flow is setup in a rectangular domvith three stationary walls and a
top lid that moves to the right with constant spgéed= 1).

u=1,v=0,T=Ty— AT, C=Cy— AC

(0.0,1.0) A D (2.0, 1.0)
Yy
v
u:O,%ZO, u=0’5_3;=07
I _0,%%—0 (1.0 * aT_, 9 _,
or ox Ll
(0.0, 0.0) B C (2.0, 0.0)

u=0,v=0,T=Ty+ AT, C=Cy+ AC

FIGURE 1. Rectangular cavity

We have assumed that, at all four corner points of the cortipotd domain, velocity com-
ponents(u, v) vanish. It may be noted here regarding specifying the baynctanditions for
pressure, the convention followed is that either the presatiboundary is given or velocity
components normal to the boundary is specified [2, pp.129].

2.2. Governing equations. The governing equations of 2-D unsteady incompressible flow
with heat and mass transfer in a rectangular domain are thtéhagy equation, the two com-
ponents of momentum equation, the energy equation, andjtieien of mass transfer. These
equations (2.1) to (2.5) subject to boundary condition8)(@nd (2.7) are discretized using the
modified Marker-And-Cell (MAC) method. Taking usual the Bsinesq approximations into
account, the dimensionless governing equations are esqutess follows:

Continuity equation % + @ =0, (2.1)
or Oy
x-momentum du + u% + v@ __oF + 1 @ + @ (2.2)
ot ox oy Oz Re ) \0x%2  0y2)’ '
-momentum dv + u@ + v@ _ 9P + 1 @ + @ (2.3)
4 ot Ox oy Oy Re ) \0x%2  0y2)’ '

Energy equation 8—T+ 8_T+ 8—T— i 82—T+82—T (2.4)
9y €q ot " Yor U(?y ~ \ Pr ox2  0y? )’ '
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oC oC oC 1 0’C  9*C
Mass transfer equation s +u I +v By <§> (W + a—y2> . (2.5)

whereu, v, P, T, C, Re, Pr, and,Sc are the velocity components inandy- directions, the
pressure, the temperature, the concentration, the Reynaldber, the Prandtl number, and the
Schmidt number respectively.

The initial, no-slip and slip wall boundary conditions areen by:
fort =0, u(z,y,0) =0, v(z,y,0) =0, T(z,y,0) = 10, C(z,y,0) = 10. (2.6)

fort > 0, onboundary ABu = 0, @ =0, 8_T =0, a_c =0,
ox ox ox

onboundary BCu =0,v=0,T =Ty + AT,C = Cy + AC,
ov oT oC
on boundary CDu = 0, Fr 0, = 0, o 0,

on boundary ADu =1,v=0,T =Ty — AT,C = Cy — AC.

2.7)

3. NUMERICAL METHOD AND DISCRETIZATION

3.1. Modified Marker-And-Cell (MAC) Method. Our main purpose in this work is to pro-
pose and use an accurate numerical method that solves thengay equations of the present
problem subject to the initial and boundary conditions. fdeo to solve the equations (2.1)-
(2.5) which are semi-linear coupled partial differentiqliations, we propose and use the mod-
ified Marker-And-Cell (MAC) method based on the MAC methodHzrlow and Welch [1].
The present modified MAC method (algorithm) is a generabimaof the original MAC method
(algorithm) in the sense that the original one enable ussorelized equations (2.1)-(2.3) and
hence to compute the flow variablesv, and P. Where as, the modified MAC method (algo-
rithm) enable us to discretized equations (2.1)-(2.5) aemth to compute the flow variables
u,v, P,T, andC. Consider a modified MAC staggered grid fer v, and a scalar node™(
node), where pressure, temperature, and concentrati@bher are stored as shown in Fig. 2.
The x-momentum equation is written atnodes, and thg-momentum equation is written at
v nodes.The energy and the mass transfer equations arenvaitéescalar node. Accordingly,
the various derivatives in theemomentum equation (2.2) are calculated as follows:

ou n+1 - .
(E)HUQJ = (“¢+1/2,j - ui+1/2,j)/At7 (3.1)
924\ "t . " -
(W)iﬂm - (qu/QJ —2ultl, 1m)/m (3.2)
92u\ " nt1 nal ntl )
(3—Z/2>i+1/2j - ( Yit1/2,5+1 —2u Uit ryo T Uitya,5— 1)/Ay ; (3.3)
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1
aP\"*
o n+1 n+1
<—8$ = (Pz'+1,j - B >/Am (3.4)
i+1/2,j

Using the modified MAC method, the other terms in thenomentum equation (2.2) are
written as

ou\"
oz = Uiy1/a\Uiva/ag ~ Yivyag ) [ A 3.5
<U8x>z_+1/27j Uit1/2,j (uz+3/2,] uz+1/2,]>/ x, (3.5)
ou\" . . .
<”a_y>i Iy = Vit1/2,5 <“z‘+1/2,j+1 - ui+1/2,j> / Ay. (3.6)
Herev}',, , ; is given by
Vik/2g = (UZJ'H/? + Ui 12 T Vi1 T ’Uz'+1,j—1/2) /4' (3.7)

{Pi.j+15 T 41, Cija}
°

T”i.jJr;

{Pi_1,js Ti-1.j Ci—1,j} {P, ;, T, Ci } {Pis1,js Tiz,js Ciya,j}

° —> ° *—> °
Ui 15 Uitl,j

{P;;j-1,T; j-1,Cij1}

FIGURE 2. Modified MAC staggered grid system

For simplicity, we will implement a fully explicit versionfahe time-splitting (fractional
time-step) method, for both the viscous and the diffusiomge When this method is applied
to thez-momentum equation on the staggered grid from time I&véd ¢ yields the following
equation at the intermediate step:

N n n n n n
Yit1/25 = Yiga/25 un Uir12.5 — Yivs/2j Lon (“z’+1/2,j - “z’+1/2,j+1)
At = Yi4+1/2, Az i+1/2,5 Ay (3.8)
n n n n n n ’
+uz’+3/2,j = 2U g T U . Uiy 1ya 541~ 2Uiga/25 T Wika/2,5-1

ReAx? ReAy?
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Similarly for they-momentum equation we obtain the following equation:

7 _n n _ N n _n
Vij+1/2 = Y5 j11/2 - Vim1,j+1/2 — Yij+1/2 Lo Yij+1/2 ~ Yij+3/2
At 1,j+1/2 Az 4,j+1/2 Ay

3.9

”?+1,j+1/2 - 202]‘—&-1/2 + ”?—1,j+1/2 . ”?,j+3/2 - 202]‘—&-1/2 + ”?,j—1/2 (39
ReAx? ReAy? '

Practical stability requirement obtained from the Von Nanm analysis for the Euler explicit
solvers are given by Peyret and Taylor [4, 148], given in &qoa (3.10) and (3.11). It may
be noted here that these relations establish stabilityinemment of the discretized equations
associated with the original MAC method. Where as the ptegkysical problem contains
additional flow variables associated with heat and massfeamrquations ((2.4) and (2.5)).
For which the discretized equations are in (3.19) and (3. 20)vever there is a need to define
stability requirement which are proposed by us in equat{@mk2) and (3.13). In fact, these
two relations contairPr andSc, associated in heat and mass transfer equations.

_|_

(Ju| + [v])*AtRe < 4, (3.10)
At 1 1
4 < .
Toe {Amﬁ + Ay2] <5, (3.11)
Uii v\ 1 2 1 1
JAN 7l [ ¥ A R R (- — N | 3.12
i [(Aw+Ay> Re | Pr (Ax2+Ay2)] - (3.12)
Ui i Vi 1 2 1 1
AL = ) —+— || <L 3.13
I KA:U—'—Ay) Re+Sc (Am2+Ay2>] - (3.13)
Now advancing from” to ¢ and ther¥ to t**! one obtains the elliptical pressure equation:
= Vv2prtl 3.14
=V (3.14)
The corresponding homogeneous Neumann boundary conébtigmessure is given by:
n+1
Ay (3.15)
on

Now using central difference scheme:

1 1 1 1 1 1
PzTiJ B 2373* + Pin—ij + Pznjtrl B 2Pirfj+ + PZnJJr—l
Ax? Ay?
o ) =Y ) (3.16)
_ L Ui1j25 — Uic1/2,4 n Vi j+1/2 — Vi j—1/2
At Ax Ay ’

We obtain the velocity field at the advanced time level 1), for each velocity component,
this equation gives

n+1 At n+1 n+1) (317)

Uir12,5 = Wit1/2,5 — Aa:( i+1,5 i,
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At
+1 5 1 1
Vijr1je = ige1yz — A_y(PZ,?-_&-l - P (3.18)

The modified MAC staggered grid quotients of different datives which appeared in the
energy equation is written as follows:

or e n+1 n oT\" - .
<§>w = (157 i) /AL <%>i+1,j = (T — Tiy) /A,

oT\" . . 2T\ " - . : ) 2
<a_y>z’j+1 = (T = Ti5) /A, (w>i+l,j = (Tl — 2105 + Tty ) [ Aa,

*T\"
<a—y2> 1 = (jjitlj—&-l 2Tn + zg 1)/Ay2'
?]

The discretized form of the energy equation (2.4) is given by

+1
T T T =Ty T T
i, i,
T, — 200+ 1 n Ty — 210 + 130
PrAx? PrAy?

The modified MAC staggered grid quotients of different datikes which appeared in the mass
transfer equation is written as follows:

oC " n+1 n oC\" " n
(E>zg = (G5~ ciy) /A <£>i+1,j = (Clhr; — C1y) /A,

oC\" . . 20\ " B § ) 2
(8_y>ij+1 B ( At Ci’j)/Ay’ (W>i+1,j - ( i+1,5 2C + C )/Ax R

92c\" .
(8 2> :( i,5+1 2C + Zj 1)/Ay2-
Y= Jij+

The discretized form of the mass transfer equation (2.5\&ngoy:

+1
Cii =Gl _ 0 Gl =Gy L G — Gl
At T A i, A
. o I (3.20)
Cleay =208 T Oy | Ol = 204 Gy
ScAz? ScAy?

We note thau" is not defined on, node and;" is not defined onv node. Therefore in order
to obtain these guantity, we use averaging as given below:

1 1
Uiy = B (u?+1/2,j + U?—Uz,j) and v; = 5(”2%1/2 + 'U?,j_yz)- (3.21)
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4. NUMERICAL COMPUTATIONS

We have used a modified MAC algorithm to the discretized guwmerequations in order
to compute the numerical solutions of the flow variables #exint Reynolds numbers in
consonance with low, moderate, and high. This modified MAgbiathm has an advantage
over the original MAC algorithm in discretizing and commgtithe solutions of any number of
governing equations and the flow variables augmented toakie physical problem of a 2-D
simple fluid flow. We have executed this modified MAC algorittith the aid of a computer
program developed and run in C compiler. The input data ferréhevant parameters in the
governing equations like Reynolds numb&ej, Prandtl Number Pr), and Schmidt number
(Sc) has been properly chosen incompatible with the presemigmoconsidered.

4.1. Modified MAC Algorithm. We summarize the sequence of computational steps involved
in the modified MAC algorithm as follow:

u=1,v=0,T=Ty— AT,C = Cy— AC

A D
I ] I
| | {Ps3] T53, C33}
- ——————¢ - -———t———¢———
— —
Ay
u =0, IT Vo 5 IT IT I
2,3
o T P s T _
or 0, | {P22q4Ts2, Ca2} o2 | u=0,
ac F———-¢———¢_—_——@6———¢———¢———{2_,
— =0 ws > I — oz
o2 IT 3.2 T IT
Q_U i V2,3 g:(},
o~ I I I oz
ac
————*————P-——— ———*———*‘———'%:0
(P10 > | !
| I

Be—— w=0,v=0, T=Ty+ AT,C = Co+ AC c

FIGURE 3. The rectangular staggered computational grid

4.1.1. Prediction Step.

e Using (3.8) and (3.9), calculateand® at their respective grid point locations.

e Apply the initial and boundary conditions given in equatiqi2.6) and (2.7) respec-
tively.

e These equations will be solved algebraically because tidvarecement is fully ex-
plicit.

e Linear stability conditions (3.10), (3.11), (3.12), andl{® must be obeyed.

e Divergence of the velocity field must be calculated at evieng step, using the velocity
field at the advanced time levéh + 1),

n+1 n+1 n+1 n+1

z’—:_l/2,j - “z'—+1/2,j n vz’,j—':-l/2 - vz’,;_—l/2

Az Ay ’

u

V.d=
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The sum of the divergence magnitude at all grid points shbaldatisfied to machine zero
at each time step. If this quantity increases, the calarahould be terminated and restarted
with a smaller time step.

4.1.2. Pressure Calculation.

e Calculate pressure from Pressure-Poisson equation (3.14)

e Boundary condition applied to the pressure equation ataalhdaries is the homoge-
neous Neumann boundary condition given by (3.15). This temuas solved at the
pressureij). Note that the Euler explicit time-advancement calcul#tesactual ther-
modynamic pressure (scaled by the constant density) ara pegtudo-pressure.

4.1.3. Velocity Correction.

¢ Obtain the velocity field at the advanced time legeeH- 1), for each velocity compo-
nent, this equation gives

n+1 At (P.”“ Pn+1)7

Uiprye, = Yit1/25 — A \Fiv1g — Lij
At
n+1 s o n+l _ pn+l
Vij+1/2 = Vij+1/2 Ay (Pz‘,j+1 By )

4.1.4. Temperature Calculation.

e Calculate the numerical solutions for temperature profiesising equations (3.19)
and (3.21).

4.1.5. Concentration Calculation.

e Calculate the numerical solutions for concentration pesflby using equations (3.20)
and (3.21).

5. RESULTS AND DISCUSSION

We used the modified Marker-And-Cell (MAC) method to carry the numerical compu-
tations of the unknown flow variables, v, P, T', andC for the present problem. We have
executed the modified MAC algorithm mentioned above withaiteof a computer program
developed and run in C compiler. To verify our computer cade numerical results obtained
by the present method were compared with the benchmarkisesylorted in [3]. It is seen
that the results obtained in the present work are in gooceaggat with those reported in [3]
at low Reynolds numbeRe = 100. This indicates the validity of the numerical code that we
developed.

Based on the numerical solutions fewelocity, Fig. 4 illustrates the variation afvelocity
along the vertical line through the geometric center of datangular domain at low, moderate,
and high Reynolds numberze = 10, 500, and50000. We can see that, for a giveRe = 10
and Re = 500, u-velocity first decreases from the bottom boundary of théaregular domain.
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It, then, increases to the upper boundary. But,Rer= 50000, u-velocity increases from the
bottom boundary to the upper boundary of the rectangularailttm/e also observe that, the
absolute value ofi-velocity decreases with increase in Reynolds number.

1

0.8 -

0.7 -

» 0.6 8
9 ——Re=10

T 051 ——Re=500 ||
. Re = 50000
> 04 8

0.3 4

0.1 n

0 | I I I |
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u - velocity

FIGURE 4. u-velocity along the vertical line through the geometric tegrof
the domain at low, moderate, and hifh for a fixed Pr = 6.62 andSc = 340
for grid 32 x 32 at timet = 0.0001s.

Based on the numerical solutions fewelocity, Fig. 5 illustrates the variation ofvelocity
along the horizontal line through the geometric center efrdttangular domain. It is clear that
for a givenRe, v-velocity decreases from the left boundary to the right laaup Further, the
absolute value of-velocity decreases with increase in Reynolds number.
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FIGURE 5. v-velocity along the horizontal line through the geometieater
of the domain at low, moderate, and hidte for a fixed Pr = 6.62 and
Se = 340 for grid 32 x 32 at timet = 0.0001s.

Based on the numerical solutions for pressure, Fig. 6 itiiss the variation of pressure in
the rectangular domain. We observed that, Rer= 10, the pressure is oscillatory in nature.
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However, forRe = 500 and Re = 50000, we observed the pressure decrease from the left
boundary to the right boundary. Further, the absolute vafymessure increases with increase
in Reynolds number.
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FIGURE 6. Pressure variation at low, moderate, and Hgifor a fixed Pr =
6.62 andSc = 340 for grid 32 x 32 at timet = 0.0001s.

Based on the numerical solutions for temperature, Figugtihtes the variation of tempera-
ture at different Reynolds numberB4 = 10, 500, and50000), along the vertical line through
the geometric center of the rectangular domain. It is cleat tor a givenRe, temperature
increases from the bottom boundary to the upper boundary.
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FIGURE 7. Temperature variation at low, moderate, and hitghfor a fixed
Pr = 6.62 andSc = 340 for grid 32 x 32 at timet = 0.0001s.

Based on the numerical solutions of concentration, Figludtilates the variation of con-
centration at different Reynolds numberge(= 10, 500, and50000), along the vertical line
through the geometric center of the rectangular domais.digar that for a giveiRe, concen-
tration increases from the bottom boundary to the upper deyn
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FIGURE 8. Concentration variation at low, moderate, and hitghfor a fixed
Pr = 6.62 andSc = 340 for grid 32 x 32 at timet = 0.0001s.

Grid dependence tests have been conducted on two grid sy§ténx 16 and 32 x 32).
In order to evaluate the effect of the two grid systems on #tenal convection flow in the
rectangular domain, three representative quantities\aieated numerically: the volumetric
flow rate(Q), average Nusselt numbeNw), and average Sherwood numiyet) [26] across
the horizontal centerline of the rectangular domain, wiaidhdefined as (also see [24, 25])

L
1 [2
Q= §/£ lv|dx, (5.1)
L
lfQL T — 8_T dz
— L'-3 oy
u= SAT , (5.2)
(%)
L
lfQL vC — @ dx
— L’-3 oy
Sh = ) (5.3)

Nu:vT—a—T, (5.4)
dy

sh—vo -2 (5.5)
Ay

In the present problem length,of the rectangular domain varies from 0 to 2, heidlityaries
from0to 1, AT = 0.5, andAC = 0.5. Then the volumetric flow rat&)), average Nusselt
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number (Nu), and average Sherwood numketh) across the horizontal centerline of the
rectangular domain, take the form

2
Qz/o |v|da, (5.6)

2
Nu = / ol — or dr, (5.7)
0 oy
2
Sh = / vC — @ dx. (5.8)
0 dy

In order to investigate heat transfer from the bottom to tdpewall of the rectangular do-
main, we have computed the numerical solutions of local Blussimber for two different
grid systems along the horizontal line through the geomegnter of the domain at different
Reynolds numbers. Fig. 9 illustrates comparison of contplateal Nusselt number«) from
the hot bottom wall to the cold top wall at tinte= 0.0001s.

| 0.35

—PRe=10
——Re =500

03 1
Re = 50000 /

0.25 -
D2r

0.5 1 15 2 0 05 1 15 2
x - values X - values

(@) (b)

FIGURE 9. Variation of local Nusselt numbeVu) profiles along the hori-
zontal line through the geometric center at low, moderatd, agh Re for a
fixed Pr = 6.62 andSc = 340, (a) for grid16 x 16 and (b) for grid32 x 32,
at timet = 0.0001s.

From this figure, we observe that, as we move along the hdektine through the geomet-
ric center of the domain, heat transfer decreases up to thraegec center. It, then, increases
symmetrically.

In order to investigate mass transfer from the bottom to dpewall of the rectangular
domain, we have computed the numerical solutions of locah8bod number for two different
grid systems along the horizontal line through the geomegnter of the domain at different
Reynolds numbers.

Fig. 10 illustrates comparison of computed local Sherwoathimer G1) from the hot bot-
tom wall to the cold top wall at timé = 0.0001s. From this figure, we observe that, as we



104 V. AMBETHKAR AND D. KUSHAWAHA

0.35

——Re =10
03 ——Re =500
Re = 50000

0251

02r

015

Sh

01 r

0.05 -

ol

0.2 L - - 0.05 L L
] 5 1 1.5 2 0 0.5 1
X - values X - values

(@) (b)

FIGURE 10. Variation of local Sherwood numbe$ ) profiles along the hor-
izontal line through the geometric center at low, moderatel highRe for a
fixed Pr = 6.62 andSc = 340, (a) for grid16 x 16 and (b) for grid32 x 32,
at timet = 0.0001s.

move along the horizontal line through geometric centehefdomain, mass transfer decreases
upto the geometric center. It, then, increases symmdyrical

6. CONCLUSIONS

In this study, we have proposed a modified Marker-And-Celh@) method to investigate
the problem of an unsteady 2-D incompressible flow with hadtraass transfer at low, mod-
erate, and high Reynolds numbers with no-slip and slip bagndonditions. We have used
this method to solve the governing equations along with thendary conditions and thereby
to compute the flow variables, vizu-velocity, v-velocity, P, T, andC. We have used the
staggered grid approach of this method to discretize thergavg equations of the problem.
A modified MAC algorithm was proposed and used to compute thaamical solutions of
the flow variables for Reynolds numbeRe = 10, 500, and50000 in consonance with low,
moderate, and high Reynolds numbers.

Numerical solutions for-velocity illustrates the variation ofi-velocity along the verti-
cal line through the geometric center of the rectangularaiomat low, moderate, and high
Reynolds numberse = 10, 500, and50000. We have observed that, for a givéte = 10
and Re = 500, u-velocity first decreases from the bottom boundary of théaregular domain.
It, then, increases to the upper boundary. But,Ber= 50000, u-velocity increases from the
bottom boundary to the upper boundary of the rectangularaitonWe also observed that the
absolute value ofi-velocity decreases with increase in Reynolds number. Theenical solu-
tions forv-velocity illustrates the variation af-velocity along the horizontal line through the
geometric center of the rectangular domain. We have obdéhat, for a givenRe, v-velocity
decreases from the left boundary to the right boundary. heurtwe also observed that the
absolute value of-velocity decreases with increase in Reynolds number.
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Numerical solutions for pressure illustrates the variatid pressure in the rectangular do-
main. We have observed that, fRe = 10, the pressure is oscillatory in nature. However,
for Re = 500 and Re = 50000, we observed the pressure decrease from the left boundary
to the right boundary. Further, we have also observed ligagbsolute value of pressure in-
creases with increase in Reynolds number. The numericati@a$ for temperature illustrates
the variation of temperature at different Reynolds numi&es= 10, 500, and50000), along
the vertical line through the geometric center of the regtidar domain. We have observed
that, for a givenRe, temperature increases from the bottom boundary to theruppendary.
The numerical solutions of concentration, illustrateswheation of concentration at different
Reynolds numbersHe = 10, 500, and50000), along the vertical line through the geomet-
ric center of the rectangular domain. We have observed thiaf given Re, concentration
increases from the bottom boundary to the upper boundary.

Based on the computed local Nusselt numbén) from the hot bottom wall to the cold top
wall at timet = 0.0001s, we have observed that, as we move along the horizontalHnoaigh
the geometric center of the domain, heat transfer decregsesthe geometric center. It, then,
increases symmetrically. Based on the computed local Slwehwaumber §£4) from the hot
bottom wall to the cold top wall at time= 0.0001s. We have observed that, as we move along
the horizontal line through geometric center of the domaiass transfer decreases upto the
geometric center. It, then, increases symmetrically.

7. CODE VALIDATION

To check the validity of our present computer code used taiolthe numerical results of
u-velocity andv-velocity, we have compared our present results with thesetimark results
are given by Ghia et al. [3] and it has been found that theyragood agreement.
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FIGURE 11. Comparison of the numerical resultsusfelocity along the ver-
tical line through the geometric center of the square cdwity?e = 100.
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