• Title/Summary/Keyword: Low Resolution Mass Spectrometry

Search Result 18, Processing Time 0.019 seconds

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

Identification Performance of Low-Molecular Compounds by Searching Tandem Mass Spectral Libraries with Simple Peak Matching

  • Milman, Boris L.;Zhurkovich, Inna K.
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.73-76
    • /
    • 2018
  • The number of matched peaks (NMP) is estimated as the spectral similarity measure in tandem mass spectral library searches of small molecules. In the high resolution mode, NMP provides the same reliable identification as in the case of a common dot-product function. Corresponding true positive rates are ($94{\pm}3$) % and ($96{\pm}3$) %, respectively.

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok;Cha, Hyung-Ki;Kim, Duk-Hyeon;Min, Ki-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.101-105
    • /
    • 2004
  • The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis

  • Lee, Young-Jin;Smith, Erica A.;Jun, Ji-Hyun
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • A new approach of volatile compounds analysis is proposed using a linear ion trap Orbitrap mass spectrometer coupled with gas chromatography through an atmospheric pressure photoionization interface. In the proposed GC-HRMS/MS approach, direct chemical composition analysis is made for the precursor ions in high resolution MS spectra and the structural identifications were made through the database search of high quality MS/MS spectra. Successful analysis of a complex perfume sample was demonstrated and compared with GC-EI-Q and GC-EI-TOF. The current approach is complementary to conventional GC-EI-MS analysis and can identify low abundance co-eluting compounds. Toluene co-sprayed as a dopant through API probe significantly enhanced ionization of certain compounds and reduced oxidation during the ionization.

Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel

  • Cho, Yun-Ju;Islam, Annana;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.43-46
    • /
    • 2012
  • In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotron resonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have been combined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturated cyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with more than two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings were identified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compounds were observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICR MS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each other for more complete understanding of oil samples.

Alternative Sample Preparation Techniques in Gas Chromatographic-Mass Spectrometric Analysis of Urinary Androgenic Steroids

  • Cho, Young-Dae;Choi, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1315-1322
    • /
    • 2006
  • The following study describes the gas chromatography-mass spectrometry (GC-MS) based screening and confirmation analysis of urinary androgenic steroids. Four commercially available solid-phase extraction (SPE) cartridges, Serdolit PAD-1, Sep-pak $C_{18}$, amino-propyl, and Oasis HLB, and three different extractive organic solvents, diethyl ether, methyl tert-butyl ether (MTBE), and n-pentane, were tested for sample preparation. Overall, Oasis HLB combined with MTBE extraction provided the highest recoveries in 39 of 46 total androgenic steroids examined and it showed a good extraction yield (>82.1%) for polar steroids, such as metabolites of fluoxymesterone, oxandrolone, and stanozolol, which gave a poor recovery in both n-pentane (9.2-64.3%) and diethyl ether (22.2-73.6%) extractions. All SPE sorbents tested showed potential, because they were efficient in extraction for most or selective steroids. When applied to positive urine samples based on the results obtained, the present method allowed selective and sensitive analysis for detection of urinary androgenic steroids. The experiments showed that the high-resolution MS method is clearly more efficient than the low-resolution MS technique for the detection of many urinary steroids. However, comprehensive sample clean-up procedures also might be needed especially in confirmation analysis to increase detectability.

A Study of the Potential Interference of ArC+ on the Direct Determination of Trivalent Chromium and Hexavalent Chromium Using Ion Chromatography Coupled with ICP-MS

  • Nam, Sang-Ho;Park, Young-Il;Kim, Jae-Jin;Han, Sun-Ho;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.447-451
    • /
    • 2004
  • Low and high resolution inductively coupled plasma mass spectrometry (ICP-MS) coupled with ion chromatography (IC) has been investigated for speciation of Cr(III) and Cr(VI). In particular, the interference of ArC^+formed by the carbon in a sample on the simultaneous determination of Cr(III) and Cr(VI) has been studied. In chemical speciation, this study shows that quadrupole type ICP-MS with low resolution has a limitation of simultaneous determination fo chromium species if the sample contains the carbon elements. The interference problems can be solved by high resolution ICP-MS.

Construction of an Improved Tandem Time-of-flight Mass Spectrometer for Photodissociation of Ions Generated by Matrix-assisted Laser Desorption Ionization (MALDI)

  • Moon, Jeong-Hee;Yoon, So-Hee;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.763-768
    • /
    • 2005
  • An improved tandem time-of-flight (TOF) mass spectrometer for the photodissociation (PD) study of ions generated by matrix-assisted laser desorption ionization (MALDI), MALDI-TOF-PD-TOF, has been designed and constructed. Recording a full spectrum with better than unit mass resolution even in low mass range has been achieved without reflectron voltage stepping which was needed in the previous version. Other aspects of the improvement, such as those in the data system which now allow 10-100 times faster spectral acquisition than with the previous instrument, are described. Rationale for the ideas which have led to the improvements is presented also.

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.