• 제목/요약/키워드: Low Power Sensor Network

검색결과 432건 처리시간 0.034초

Mutual Authentication Protocol Using a Low Power in the Ubiquitous Computing Environment

  • Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.91-94
    • /
    • 2004
  • Ubiquitous sensor network is to manage and collect information autonomously by communicating user around device. Security requirements in Ubiquitous based on sensor network are as follows: a location of sensor, a restriction of performance by low electric power, communication by broadcasting, etc. We propose new mutual authentication protocol using a low power of sensor node. This protocol solved a low power problem by reducing calculation overload of sensor node using two steps, RM(Register Manager) and AM(Authentication Manager). Many operations performing the sensor node itself have a big overload in low power node. Our protocol reduces the operation number from sensor node. Also it is mutual authentication protocol in Ubiquitous network, which satisfies mutual authentication, session key establishment, user and device authentication, MITM attack, confidentiality, integrity, and is safe the security enemy with solving low electric power problem.

  • PDF

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

센서네트워크에서 전력 조절에 의한 에너지를 효율적으로 사용하는 라우팅 (Energy Efficient Routing with Power Control in Sensor Networks)

  • 윤형욱;이태진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 통신소사이어티 추계학술대회논문집
    • /
    • pp.140-144
    • /
    • 2003
  • A sensor network consists of many low-cost, low-power, and multi-functional sensor nodes. One of most important issues in of sensor networks is to increase network lifetime, and there have been researches on the problem. In this paper, we propose a routing mechanism to prolong network lifetime, in which each node adjusts its transmission power to send data to its neighbors. We model the energy efficient routing with power control and present an algorithm to obtain the optimal flow solution for maximum network lifetime. Then, we derive an upper bound on the network lifetime for specific network topologies.

  • PDF

저전력 무선 네트워크를 위한 유무선 연동 센서 네트워크의 전력 제어 방법 (Method for Power control of Wired and Wireless linkage Sensor Network for Low-power Wireless network)

  • 이경숙;김현덕
    • 융합보안논문지
    • /
    • 제12권3호
    • /
    • pp.27-34
    • /
    • 2012
  • 본 논문에서는 IEEE와 ZigBee Alliance에서 제정한 국제 표준안과 호환성을 가지고, 저전력 저비용을 강점으로 하는 지그비를 이용하여 상대적으로 열악한 전송 환경을 갖지만 적용이 용이한 무선망과, 기존 무선 기반 센서 네트워크 단점을 극복하기 위해 이미 구축되어 있는 동축케이블을 이용한 유선망을 연동함에 있어서 RSSI 모니터링을 통한 출력파워 조절 알고리즘을 이용하여 저전력 소모를 특징으로 하는 지그비 장치의 새로운 저전력 소모 방안을 제시하였다. 보다 최적화된 저전력 소모를 가능하도록 실험을 통해 RSSI 모니터링을 통한 출력 파워 조절 알고리즘의 유효성을 검증하였다.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • 제10권3호
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

저 전력 센서 네트워크에서의 계층 노드 간 지연 감소를 위한 라우팅 프로토콜 분석 (Routing protocol Analysis for Minimum delay Between Hierarchical node in Low Power Sensor Network)

  • 김동일
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1721-1726
    • /
    • 2014
  • 유비쿼터스 컴퓨팅의 핵심 기술인 센서 네트워크 기술이 각광을 받으면서 다양한 종류의 센서 노드로 구성된 센서 네트워크에 대한 연구가 활발히 진행되고 있다. 센서 네트워크 어플리케이션들의 주요 트래픽 패턴은 몇몇의 센서 노드들로부터 싱크 노드로 패킷을 전송하는 타입의 단일 방향성 데이터 수집형태로 구성되어있으며 소스 노드, 중간 노드, 싱크 노드에 이르기 까지 각각 자신의 상위 노드를 곧 바로 깨움으로써 지연의 감소와 에너지 효율성을 이끌어냈다. 본 논문에서는 센서 노드의 지연 감소를 위해 2계층 클러스터 구조를 제시하고 이에 기존에 사용한 라우팅 프로토콜을 네트워크 시뮬레이션을 통해 비교 분석하였다.

Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling

  • Lim, HoChul;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • 제16권2호
    • /
    • pp.84-92
    • /
    • 2018
  • For large wireless sensor networks running on battery power, the time synchronization of all sensor nodes is becoming a crucial task for waking up sensor nodes with exact timing and controlling transmission and reception timing. However, as network size increases, this synchronization process tends to require long processing time consume significant power. Furthermore, a naïve synchronization scheduler may leave some nodes unsynchronized. This paper proposes a power-efficient scheduling algorithm for time synchronization utilizing the notion of density, which is defined by the number of neighboring nodes within wireless range. The proposed scheduling algorithm elects a sequence of minimal reference nodes that can complete the synchronization with the smallest possible number of hops and lowest possible power consumption. Additionally, it ensures coverage of all sensor nodes utilizing a two-pass synchronization scheduling process. We implemented the proposed synchronization algorithm in a network simulator. Extensive simulation results demonstrate that the proposed algorithm can reduce the power consumption required for the periodic synchronization process by up to 40% for large sensor networks compared to a simplistic multi-hop synchronization method.

에너지 효율성을 고려한 저 전력 센서 네트워크에서의 라우팅 프로토콜 분석 (Routing protocol Analysis in Low Power Sensor Network For Energy Efficiency)

  • 김동일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.777-780
    • /
    • 2014
  • 센서 네트워크 기술이 각광을 받으면서 다양한 종류의 센서 노드로 구성된 센서 네트워크에 대한 연구가 활발히 진행되고 있다. 센서 네트워크 어플리케이션들의 주요 트래픽 패턴은 몇몇의 센서 노드들로부터 싱크 노드로 패킷을 전송하는 타입의 단일 방향성 데이터 수집형태로 구성되어있으며 소스 노드, 중간 노드, 싱크 노드에 이르기 까지 각각 자신의 상위 노드를 곧 바로 깨움으로써 지연의 감소와 에너지 효율성을 이끌어냈다. 본 논문에서는 저 전력 센서 네트워크에서사용중인 다양한 프로토콜들을 분석하여 가장 효율적인 프로토콜을 네트워크 시뮬레이션을 통해 비교 분석하여 실질적 적용 가능성을 제시 하였다.

  • PDF

야생식생군락 생태계 모니터링을 위한 사물인터넷 기반의 저전력 무선 센서네트워크 시스템에 관한 연구 (Study on Internet of Things Based Low-Power Wireless Sensor Network System for Wild Vegetation Communities Ecological Monitoring)

  • 김내수;이계선;류재홍
    • 한국IT서비스학회지
    • /
    • 제14권1호
    • /
    • pp.159-173
    • /
    • 2015
  • This paper presents a study on the Internet of Things based low-power wireless sensor networks for remote monitoring of wildlife ecosystem due to climate change. Especially, it is targeting the wild vegetation communities ecological monitoring. First, we performed a pre-test and analysis for selecting the appropriate frequency for the sensor network to collect and deliver information reliably in harsh propagation environment of the forest area, and selected for sensors for monitoring wild vegetation communities on the basis of considerations for selecting the best sensor. In addition, we have presented the platform concept and hierarchical function structures for effectively monitoring, analyzing and predicting of ecosystem changes, to apply the Internet of Things in the ecological monitoring area. Based on this, this paper presents the system architecture and design of the Internet of Things based low-power wireless sensor networks for monitoring the ecosystem of the wild vegetation communities. Finally, we constructed and operated the test-bed applied to real wild trees, using the developed prototype based on the design.

A LOW-COST PROTOCOL IN SENSOR NETWORK UBIQUITOUS ENVIRONMENT

  • Lee Dong-heui;Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.766-769
    • /
    • 2005
  • In a ubiquitous environment made up of multiple sensors, most sensors participate in communications with limited battery, and the sensor node isn't able to participate in communications when all the battery is used up. When an existing authentication method is used for the sensor node which has to participate in a long term communication with limited battery, it creates a problem by making the length of network maintenance or sensor node's operation time relatively shorte. Therefore, a network structure where RM (Register Manager) node and AM (Authentication Manager) node are imported to solve the energy consumption problem during a communication process is presented in this thesis. This offers a low power protocol based on safety through a mutual authentication during communications. Through registration and authentication manager nodes, each sensor nodes are ensured of safety and the algorithm of key's generation, encryption/descramble and authentication is processed with faster operation speed. So the amount of electricity used up during the communications between sensor nodes has been evaluated. In case of the amount of electrical usage, an average of $34.783\%$ for the same subnet and 36.855 for communications with two different subnets, are reduced. The proposed method is a protocol which maintains the limited battery for a long time to increase the effectiveness of energy usage in sensor nodes and can also increase the participation rate of communication by sensor nodes.

  • PDF