• 제목/요약/키워드: Low NOx

검색결과 611건 처리시간 0.027초

연소개선에 의한 $10MW_{e}$급 발전용 보일러의 NOx 저감 (NOx Reduction in the $10MW_{e}$ Power Boiler by Combustion Improvement)

  • 김태형;김성철;안국영;홍성선
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.26-34
    • /
    • 2000
  • Geometry change of burner nozzle has influence on fuel atomizing and combustion characteristics. NOx reduction technologies can be divided into two method; Before combustion method(NOx treatment of fuel) and After combustion method(NOx treatment of flue gas). In this study, experiments are carried out using difference nozzle and combustion condition change to reduce NOx in heavy oil fired thermal utility boiler. These methods have advantage like easy application and low installation cost. By this method NOx can be reduced by 18% and maintain CO emission level.

  • PDF

재연소 과정의 NOx 발생특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of NOx Emission in Reburning Process)

  • 박종일;안국영;김한석;손민규;김용모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.698-703
    • /
    • 2000
  • The characteristics of NOx emission in reburning process have been experimentally studied. The design point of burner is creative of three distinct reaction zones; a primary flame zone that NOx producted, reburn zone to reduce the primary zone NOx and burnout zone. Liquefied Petroleum Gas(LPG) was used as main and reburn fuels. Process parameters investigated included main/reburn fuel ratio, primary/secondary air ratio, reborn fuel injector position and different designed quarl. The NOx emission characteristic of aerodynamic designed burner relied on reborn fuel ratio and was slightly affected by a reburn fuel injector position and quarl shape.

  • PDF

공기다단 석탄버너에서 연소공기 유동조건에 따른 NOx 배출특성에 관한 연구 (A study on the NOx emission characteristics with combustion air flow conditions in air-staged coal burner)

  • 김혁제;송시홍;김상현;이익형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.379-384
    • /
    • 2003
  • Coal-burning utilities are facing a major NOx control compliance challenge due to the heavy emission regulation. In response to this challenge, some applicative technologies to effectively reduce NOx are developed and applied in the pulverized coal power plants. One of these is low NOx burner(LNB) equipped with multi-staged air register. In this study, NOx emission rate and flame shapes are investigated with secondary and tertiary air flow conditions in air staged coal burner, and the optimal windows of flow conditions to minimize NOx emission rate are found out. The test conditions treated in this study are the flow rate, swirl direction and intensity and throat injection velocity of secondary and tertiary air.

  • PDF

연소실 압력변동을 이용한 저 NOx 연소의 새로운 접근 (New Approach to Low NOx Combustion by Changing Combustor Pressure)

  • 김종률;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1148-1155
    • /
    • 2005
  • In this study, the influence of changing combustor pressure on nitric oxide emission was investigated. Expansion of reaction region was more clear in the P$^{*}$ <1 conditions compared to the P$^{*}\geq1$ conditions, and it could be observed that flames are distinct in the P$^{*}\geq1$ conditions and that brightness is relative low and wide distribution is shown in the P$^{*}$ <1 conditions. In the respect of temperature distribution, narrow and high-temperature region was shown in the P$^{*}\geq1$ conditions. On the other hands, overall uniform temperature distributions were shown in the P$^{*}$ <1 conditions. Nitric oxide emission decreased with decreasing combustor pressure. This tendency was explained by the mean flame temperature distribution. Low NOx combustion is ascribed to wide-spread reaction region in the low combustor Pressure and oscillation were shown P$^{*}\leq0.97$, and strength and sizes of oscillation were more increased with lower pressure index. These results demonstrate that flame shape and nitric oxide emission can be controlled with changing combustor pressure.

Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구 (Experimental Study on DeNOx Characteristics of Urea-SCR System)

  • 함윤영;이성호;정홍석;신동현
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

서울지역 대형연소시설에서의 질소산화물 제거효율과 배출계수 산정 (Evaluation of NOx Reduction Efficiency and Emission Factor from Large Combustion Facilities in Seoul)

  • 신진호;오석률;김정영;전재식;신정식
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.27-33
    • /
    • 2003
  • This survey was performed to investigate the NOx emission factors at 3 Municipal Solid Waste Incinerators(MSWI) and 5 Power generation boilers in Seoul. The NOx concentrations were measured before and after control systems. The results were as follows. 1) The NOx reduction efficiencies of Selective Catalytic Reduction (SCR) using ammonia as reducing agent ranged from 53.7% to 89.9%. The NOx reduction efficiencies of SCR using methanol as reducing agent, Non- Selective Catalytic Reduction (NSCR) using ethanol as reducing agent and low-NOx burner were 20.8%, 29.1% and 24.7%, respectively. 2) The NOx emission factors at A-1, A-2 and A-3 facilities of MSWI were 0.786, 0.127 and 0.594 kg Nox/ton fuel, respectively. The factors of A-1 and A-3 facilities were higher than the average value of Korea. 3) The NOx emission factors at B-1, B-2, B-3, B-4 and B-5 facilities of Power generation boiler were 2.109, 0.726, 4.106, 8.378 and 5.168 kg Nox/ton fuel, respectively. The factors of B-4 and B-5 facilities were higher than the average value of Korea.

건식 저 NOx 가스터빈의 연소동압 측정용 소프트웨어 시스템 개발 (Development of a Software System for Measurements of Combustion Dynamics of a Dry Low NOx Gas Turbine)

  • 장욱;서석빈;정재화;안달홍;김종진;차동진
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.931-938
    • /
    • 2002
  • Combustion dynamics of a dry low NOx gas turbine have been measured by utilizing a dynamic pressure measurement system. The software part of the measurement system, implemented with a commercial general-purpose DASYLab version 5.6 code, basically acquires combustion dynamics signals, performs the FFT analysis, and displays the results. The gas turbine often experiences momentary combustion instability, especially when its combustion mode changes. It is found that the measurement system developed in the study may outperform the other commercial dynamic pressure measurement system. The developed system currently serves to monitor the combustion dynamics of the gas turbine.

2단 동축형 Cyclone 연소기를 이용한 저공해 미분탄 연소특성 연구 (A Study on Low Emission Pulverized Coal Combustion in the 2 Staged Coaxial Cyclone Combustor)

  • 최상일;박주식;김성완;김호영
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.67-83
    • /
    • 1999
  • The objective of this study is development of low emission pulverized coal combustor for reducing pollutant emission generated from coal combustion. Low emission combustion technology for reducing NOx and fly ash was investigated by using 2 stage coaxial cyclone combustor. Staged combustion was employed for NOx reduction and high temperature slagging combustion was also studied for fly ash removal in the combustor. The result of this study shows that the low emission combustion system can reduce the amount of atmospheric pollutions with improved boiler efficiency and performance.

  • PDF

MnOx/Sewage Sludge Char를 이용한 저온 NH3 SCR의 반응 메커니즘 (Reaction Mechanism of Low Temperature NH3 SCR over MnOx/Sewage Sludge Char)

  • 차진선;박영권;박성훈;전종기
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.308-311
    • /
    • 2011
  • 하수슬러지 촤에 MnOx를 담지한 촉매를 사용하여 $NH_3$를 환원제로 하는 선택적 촉매 환원반응의 반응 메커니즘 분석을 수행하였다. XRD 분석 결과 활성 Mn phase는 $Mn_3O_4$인 것으로 여겨졌다. 또한 $150^{\circ}C$ 이하에서는 흡착반응이 주요한 질소산화물 저감 메커니즘으로 작동하였으나, $100{\sim}150^{\circ}C$에서는 환원반응도 질소산화물 저감에 관여하는 것으로 보여졌다. 실험결과에 기초하여 활성 촤와 여기에 MnOx를 담지한 촤에서의 반응속도상수를 비교하였다. MnOx 담지촤는 높은 충돌계수와 낮은 활성화 에너지에 기인하여 높은 반응속도 상수와 높은 NOx 제거 효율을 나타내었다. 두 가지 촤 모두 본 실험 조건하에서 활성화 에너지는 상대적으로 낮았다(10~12 kJ/mol).

다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) - (A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner)

  • 신명철;안재현;김세원
    • 한국연소학회지
    • /
    • 제8권1호
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF