• Title/Summary/Keyword: Low Heat Cement

Search Result 214, Processing Time 0.025 seconds

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

Manufacturing and Utilization Technology of Non-carbonation Materials and Substituting 5wt.% Limestone in Low Heat Cement (비탄산염 원료 활용 석회석 5wt.% 이상 대체 저열시멘트 제조 및 활용기술 개발)

  • Son, Young Jun;Park, Dong Jin;Park, Cheol;Lim, Chae Yong
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.27-28
    • /
    • 2022
  • The cement industry emits a large amount of CO2, and 60~65% of the CO2 is generated from calcination of raw materials. So, the CO2 from cement industry can be reduced by substituting decarbonated materials for limestone. In this study, the chemical composition and grindability of three types of steel slag were evaluated and the application of those materials will be examined for the production of low heat portland cement.

  • PDF

Strength Development of Low Heat Portland Cement Concrete according of Substitution of Fly-ash in High Strength Range (플라이 애쉬 치환율에 따른 저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Kim, Tae-Hong;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete according of addition of fly-ash in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and construction.

  • PDF

Influence of Limestone Powder on the Hydration of Cement Contained much Chloride (석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향)

  • Jeong, Chan-Il;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

The characteristics of Low Blaine Cement (저 분말도 포틀랜드 시멘트의 특성)

  • 김재영;전준영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.13-18
    • /
    • 1998
  • This experiments carried out in order to investigate decreasing of the hydration heat and physical characteristics of the low blaine OPC. The experiments results indicated hydration heat was reduced by about 15% in th low blaine OPC(2300$\textrm{cm}^2$/g). The Mini-slump value of the cement paste was significantly increased and viscosity of one was decreased as blaine value in OPC decrease.

  • PDF

A Comparison Study on Quality Regulation of China and Korea Cement (중국과 한국 시멘트의 품질규정에 대한 비교 연구)

  • Pei, Chang-Chun;Jin, Hu-Lin;Li, Bai-Shou;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.159-162
    • /
    • 2006
  • This study generally compared and investigated cement type and quality of China and Korea. Cement in Korea is divided into five such as ordinary, high early strength, moderate heat, low heat and sulfate resistance portland cement. However cement in China is divided into portland cement($P{\cdot}I,\;P{\cdot}II$) and ordinary portland cement($P{\cdot}O$) with admixture displacement ratio and it is again divided into 6 level and 7 level with 28 days compressive strength. In addition China classified cement into several standards, such as Mgo, SO3,, igloss, blame, setting time, stability, strength, alkali and sampling test. Therefore it should be careful to conclude so quickly without right understanding whether quality of China cement is bad or good. The better way to evaluate China cement is synthetically understanding a value engineering and consumer awareness.

  • PDF

An Experimental Study on the Strength Estimation of Belite Cement Mortar by Microwave Heating (마이크로파를 이용한 저열 포틀랜드(4종)시멘트 모르터의 조기강도 추정에 관한 실험적 연구)

  • 김민석;정근호;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.179-184
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Beilte cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility if site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Experimental Estimation of the Early Strength of Belite Cement Mortar Using Microwave (저열 포틀랜드(4종)시멘트 모르터의 마이크로파를 이용한 조기강도 추정에 관한 실험적 연구)

  • 김민석;박재한;정근호;이종균;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1077-1082
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Study on the Properties of Dam Concrete Using Low Heat Portland Cement (저열 포틀랜드 시멘트를 사용한 댐 콘크리트의 특성에 관한 연구)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kim, Tae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.445-448
    • /
    • 2006
  • In order to control the temperature crack of massive dam concrete, the selection of appropriate materials like binder, aggregates etc., is essential. To select the optimal mix proportion, ordinary portland cement(Type I) plus 25% of fly ash and low heat portland cement(Type IV) are used as binder, and 80mm of coarse aggregates are used to reduce the amount of binder and compare the compressive strength, hydration temperature and crack index. The results of this study are as following. 1. The strength of Type IV cement is advantageous on the long-term age. 2. According to the temperature measured on mock-up$(1.5m{\times}1.5m{\times}1.5m)$, and realized the thermal analysis, the Type IV cement carried out advantageous to control the thermal crack.

  • PDF