• 제목/요약/키워드: Low Energy Electron-Beam

검색결과 141건 처리시간 0.029초

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

RHEED에 의한 GaN, InN 핵생성층의 열처리 효과 분석 (Characterization of GaN and InN Nucleation Layers by Reflection High Energy Electron Diffraction)

  • 나현석
    • 열처리공학회지
    • /
    • 제29권3호
    • /
    • pp.124-131
    • /
    • 2016
  • GaN and InN epilayers with nucleation layer (LT-buffer) were grown on (0001) sapphire substrates by radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE). As-grown and annealed GaN and InN nucleation layers grown at various growth condition were observed by reflection high-energy electron diffraction (RHEED). When temperature of effusion cell for III source was very low, diffraction pattern with cubic symmetry was observed and zincblende nucleation layer was flattened easily by annealing. As cell temperature increased, LT-GaN and LT-InN showed typical diffraction pattern from wurtzite structure, and FWHM of (10-12) plane decreased remarkably which means much improved crystalline quality. Diffraction pattern was changed to be from streaky to spotty when plasma power was raised from 160 to 220 W because higher plasma power makes more nitrogen adatoms on the surface and suppressed surface mobility of III species. Therefore, though wurtzite nucleation layer was a little hard to be flattened compared to zincblende, higher cell temperature led to easier movement of III surface adatoms and resulted in better crystalline quality of GaN and InN epilayers.

Hydrogen Absorption and Electronic Property Change of Yttrium Thin Films

  • Cho, Young-Sin
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.71-79
    • /
    • 1996
  • Yttrium thin film, 580nm thick, was prepared by electron beam evaporation. Film was hydrogenated room temperature upto 40 bar hydrogen pressure, without any activation process. Hydrogen concentration was determined by a quartz-crystal microbalance(QCM) method. YH2.9 sample was made without any pulverization. Electrical resistance was measured by four-point DC method in the temperature range between room temperature and 30K for various hydrogen concentration, x=0 to 2.9 of YHx sample. Temperature dependent resistance of YH2.9 shows low temperature minimum at 105K, the metal-semiconductor transition at 260K, and a hystersis above 210K.

  • PDF

Characteristics of Hydrogenation and Electronic Properties of Thin Film Y-Hx

  • Cho, Young-Sin;Jee, Chan-Soo;Kim, Sun-Hee;Yoon, Jong-Hwan
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.35-43
    • /
    • 1992
  • Thin Film yttrium, 500 nm thick, was prepared by electron beam evaportion on sapphire substrate. Film was hydrogenated at room temperature upto 1 bar hydorgen pressure without any activation process. Electrical resistivity was measured by four-point DC method in the temperature range between room temperature and 30 K for various hydorgen concentration x = 0 to 2.924 of $YH_x$ sample. Temperature dependent resistance of $YH_{2\;924}$ shows low temperature minmum at 105K ($36{\mu}{\Omega}cm$ deep), the metal-semiconductor transition at 260K, and a hysteresis, which are similar behavior to bulk $YH_x$(x>2) experimental results.

  • PDF

Reaction of $FeC_5H_5^+$ Ion with Neutral Ferrocene: The Dependence of Reaction Pathways on Its Internal Energy

  • 김병주;소훈영
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1181-1185
    • /
    • 1999
  • The reaction of FeC5H5+ ion with ferrocene molecule is investigated using FT-ICR mass spectrometry. FeC5H5+ ions are generated by dissociative ionization of ferrocenes using an electron beam. The reaction gives rise to the formation of the adduct ion, Fe2(C5H5)3+, in competition with charge transfer reaction leading to the formation of ferrocene molecular ion, Fe(C5H5)2+·. The branching ratio of the adduct ion increases as the internal energy of the reactant ion decreases and correspondingly the branching ratio for the charge transfer reaction product decreases. The observed rate of the addition reaction channel is slower than that of the charge transfer reaction. The observation of the stable adduct ions in the low-pressure ICR cell is attributed to the radiative cooling of the activated ion-molecule complex. The mechanism of the reaction is presented to account for the observed experimental results.

반도체소자의 Via hole 결함 측정을 위한 전자컬럼 제어기술 개발 (Development of microcolumn control unit to detect of via-hole defects on wafer)

  • 노영섭;김흥태;김호섭;김대욱;안승준;김영철;진상원;황남우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.528-529
    • /
    • 2008
  • A new concept based on sample current measurements for detecting of via-hole defects on wafer has been performed by low energy electron beam microcolumn. The microcolumn has been operated at a low voltage of 290 eV with total emission current of 400 nA, and a sample current of 6 nA. The test sample was fabricated with SiO2 layer of 300 nm thickness on a piece of a silicon substrate. Preliminary results of both sample current method and secondary electron method show microcolumn and its control can be useful technology for detecting of via-hole defects on wafer.

  • PDF

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Yong-Kyun;Chai, Jong-Seo;Kim, Yu-Seog;Lee, Hye-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.208-213
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy Particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor(SEM). 35MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy Protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

  • PDF

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

저 에너지 표면 개질 이온원이 설치된 진공 웹 공정을 이용한 2층 flexible copper clad laminate 제작 (Fabrication of 2-layer Flexible Copper Clad Laminate by Vacuum Web Coater with a Low Energy Ion Source for Surface Modification)

  • 최형욱;박동희;최원국
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.509-515
    • /
    • 2007
  • In order to fabricate adhesiveless 2-layer flexible copper clad laminate (FCCL) used for COF (chip on film) with high peel strength, polyimide (PI; Kapton-EN, $38\;{\mu}m$) surface was modified by reactive $O_2^+$ and $N_2O^+$ ion beam irradiation. 300 mm-long linear electron-Hall drift ion source was used for ion irradiation with ion current density (J) higher than $0.5\;mA/cm^2$ and energy lower than 200 eV. By vacuum web coating process, PI surface was modified by linear ion source and then 10-20 nm thick Ni-Cr and 200 nm thick Cu film were in-situ sputtered as a tie layer and seed layer, respectively. Above this sputtered layer, another $8-9{\mu}m$ thick Cu layer was grown by electroplating and subsequently acid and base resistance and thermal stability were tested for examining the change of peel strength. Peel strength for the FCCLs treated by both $O_2^+$ and $N_2O^+$ ion irradiation showed similar magnitudes and increased as the thickness of tie layer increased. FCCL with Cu (200 nm)/Ni-Cr (20 nm)/PI structure irradiated with $N_2O^+$ at $1{\times}10^{16}/cm^2$ ion fluence was proved to have a strong peel strength of 0.73 kgf/cm for as-received and 0.34 kgf/cm after thermal test.

플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성 (Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy)

  • 임동석;신은정;임세환;한석규;이효성;홍순구;정명호;이정용;조형균
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.