DOI QR코드

DOI QR Code

Characterization of GaN and InN Nucleation Layers by Reflection High Energy Electron Diffraction

RHEED에 의한 GaN, InN 핵생성층의 열처리 효과 분석

  • Na, Hyunseok (Materials Science and Engineering, Daejin University)
  • 나현석 (대진대학교 신소재공학과)
  • Received : 2016.03.30
  • Accepted : 2016.04.14
  • Published : 2016.06.30

Abstract

GaN and InN epilayers with nucleation layer (LT-buffer) were grown on (0001) sapphire substrates by radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE). As-grown and annealed GaN and InN nucleation layers grown at various growth condition were observed by reflection high-energy electron diffraction (RHEED). When temperature of effusion cell for III source was very low, diffraction pattern with cubic symmetry was observed and zincblende nucleation layer was flattened easily by annealing. As cell temperature increased, LT-GaN and LT-InN showed typical diffraction pattern from wurtzite structure, and FWHM of (10-12) plane decreased remarkably which means much improved crystalline quality. Diffraction pattern was changed to be from streaky to spotty when plasma power was raised from 160 to 220 W because higher plasma power makes more nitrogen adatoms on the surface and suppressed surface mobility of III species. Therefore, though wurtzite nucleation layer was a little hard to be flattened compared to zincblende, higher cell temperature led to easier movement of III surface adatoms and resulted in better crystalline quality of GaN and InN epilayers.

Keywords

References

  1. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda : Appl. Phys. Lett. 48 (1986) 353. https://doi.org/10.1063/1.96549
  2. S. Nakamura : Jpn. J. Appl. Phys. 30 (1991) L1705. https://doi.org/10.1143/JJAP.30.L1705
  3. Y. Saito, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi : Jpn. J. Appl. Phys. 40 (2001) L91. https://doi.org/10.1143/JJAP.40.L91
  4. Y. Nanishi, Y. Saito, and T. Yamaguchi : Jpn. J. Appl. Phys. 42 (2003) 2549. https://doi.org/10.1143/JJAP.42.2549
  5. H. Na, S. Takado, S. Sawada, M. Kurouchi, T. Akagi, H. Naoi, T. Araki, and Y. Nanishi : J. Crystal Growth 300 (2007) 177. https://doi.org/10.1016/j.jcrysgro.2006.11.038
  6. J. Suda, T. Kurobe, and H. Matsunami : J. Crystal Growth 201/202 (1999) 437. https://doi.org/10.1016/S0022-0248(98)01370-0
  7. H. Chen, Z. Q. Li, H. F. Liu, L. Wan, M. H. Zhang, Q. Huang, J. M. Zhou, Y. Luo, Y. J. Han, K. Tao, and N. Yang : J. Crystal Growth 210 (2000) 811. https://doi.org/10.1016/S0022-0248(99)00743-5
  8. A. F. Wright and J. S. Nelson : Phys. Rev. B 51 (1995) 7866. https://doi.org/10.1103/PhysRevB.51.7866
  9. A. F. Wright : J. Appl. Phys. 82 (1997) 2833. https://doi.org/10.1063/1.366114
  10. D. Muto, R. Yoneda, H. Naoi, M. Kurouchi, T. Araki, and Y. Nanishi : Mater. Res. Soc. Symp. Proc. 831 (2005) E4.2.1.
  11. M. Gherasimova, G. Cui, Z. Ren, J. Su, X.-L. Wang, J. Han, K. Higashimine, and N. Otsuka : J. Appl. Phys. 95 (2004) 2921. https://doi.org/10.1063/1.1644036
  12. J. E. Van Nostranda, K. L. Averetta, R. Cortezb, J. Boeckla, C. E. Stutza, N. A. Sanfordc, A. V. Davydovd, and J. D. Albrechtb : J. Crystal Growth 287 (2006) 500. https://doi.org/10.1016/j.jcrysgro.2005.11.073

Cited by

  1. RF-MBE 성장조건에 따른 InGaN 단결정 박막의 결정성 관찰 vol.31, pp.5, 2016, https://doi.org/10.12656/jksht.2018.31.5.237