• Title/Summary/Keyword: Low Current Ripple

Search Result 281, Processing Time 0.021 seconds

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

A Minimization Study of Consuming Current and Torque Ripple of Low Voltage BLDC Motor (저전압용 BLDC 전동기의 소비전류 및 토크리플 최소화 연구)

  • Kim, Han-Deul;Shin, Pan Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1721-1724
    • /
    • 2017
  • This paper presents a numerical optimization technique to reduce input current and torque ripple of the low voltage BLDC motor using core, coil and switching angle optimization. The optimization technique is employed using the generalized response surface method(RSM) and sampling minimization technique with FEM. A 50W 24V BLDC motor is used to verify the proposed algorithm. As optimizing results, the input current is reduced from 2.46 to 2.11[A], and the input power is reduced from 59 [W] to 51 [W] at the speed of 1000 [rpm]. Also, applied the same optimization algorithm, the torque ripple is reduced about 7.4 %. It is confirmed that the proposed technique is a reasonably useful tool to reduce the consuming current and torque ripple of the low voltage BLDC motor for a compact and efficient design.

Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with Zero Current Ripple

  • Baek, J.-W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.79-84
    • /
    • 1998
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with low output current ripple is presented. A simple auxiliary circuit added in the secondary provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches, as well as reduces the output current ripple (ideally zero ripple). The auxiliary circuit includes neither lossy components nor additional active switches which are demerits of the previously presented ZVZCS converters. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive for high performance high power (>1kW) applications. The principle of operation, features and design considerations are illustrated and verified on a 2.5kW, 100KHz IGBT based experimental circuit.

  • PDF

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

Low-ripple coarse-fine digital low-dropout regulator without ringing in the transient state

  • Woo, Ki-Chan;Yang, Byung-Do
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.790-798
    • /
    • 2020
  • Herein, a low-ripple coarse-fine digital low-dropout regulator (D-LDO) without ringing in the transient state is proposed. Conventional D-LDO suffers from a ringing problem when settling the output voltage at a large load transition, which increases the settling time. The proposed D-LDO removes the ringing and reduces the settling time using an auxiliary power stage which adjusts its output current to a load current in the transient state. It also achieves a low output ripple voltage using a comparator with a complete comparison signal. The proposed D-LDO was fabricated using a 65-nm CMOS process with an area of 0.0056 μ㎡. The undershoot and overshoot were 47 mV and 23 mV, respectively, when the load current was changed from 10 mA to 100 mA within an edge time of 20 ns. The settling time decreased from 2.1 ㎲ to 130 ns and the ripple voltage was 3 mV with a quiescent current of 75 ㎂.

Analog-Digital Switching Mixed Mode Low Ripple - High Efficiency Li-Ion Battery Charger (아날로그 - 디지털 스위칭 혼합형 저 리플- 고 효율 Li-Ion 배터리 충전기)

  • Jung, Sang-Hwa;Woo, Young-Jin;Kim, Nam-In;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2531-2533
    • /
    • 2001
  • This paper describes a low noise and high efficiency analog-digital switching mixed mode battery charger for production facilities of Li-Ion batteries. The requirements for battery chargers for production facilities are very strict. The accuracy of output voltage and output current should be below 0.1% with very low ripple current. Therefore analog type linear regulators are widely used for battery charger in spite of their inefficiency and bulkiness. We combined linear regulator as a voltage source with digital switching converter as a dependent current source. Low current ripple and high accuracy are obtained by linear regulator while high efficiency is achieved by digital switching converter. Experimental results show that proposed method has 0.1% ripple and 90% efficiency at an output current of 1A for a battery voltage of 4V.

  • PDF

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.