• Title/Summary/Keyword: Low Complexity

Search Result 1,865, Processing Time 0.038 seconds

A low-complexity controller design for Segway (세그웨이를 위한 낮은 복잡도를 갖는 제어기의 설계)

  • Kim, Byung-Woo;Hwang, Sung-Jo;Park, Bong Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1339-1340
    • /
    • 2015
  • In this paper, we propose a low-complexity control scheme for segway. To design the controller, we use the prescribed performance function and analyze the stability of the proposed control system using the Lyapunov stability theorem. By prescribed performance function, we can adjust the transient and steady-state response. Finally, the simulation results are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

Low-Complexity Lattice Reduction Aided MIMO Detectors Using Look-Up Table (Look-Up Table 기반의 복잡도가 낮은 Lattice Reduction MIMO 검출기)

  • Lee, Chung-Won;Lee, Ho-Kyoung;Heo, Seo-Weon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.88-94
    • /
    • 2009
  • We propose a scheme which reduce the computational complexity of the lattice reduction (LR) aided detector in MIMO system. The performance of the ML detection algorithm is good but the computational complexity grows exponentially with the number of antenna elements and constellation points. LR aided detector shows the same diversity with the ML scheme with relatively less complexity. But the LR scheme still requires many computations since it involves several iterations of size reduction and column vector exchange. We notice that the LR process depends not on the received signal but only on the channel matrix so we can apply LR process offline and store the results in Look-Up Table (LUT). In this paper we propose an algorithm to generate the LUT which require less memory requirement and we evaluate the performance and complexity of the proposed system. We show that the proposed system requires less computational complexity with similar detection performance compared with the conventional LR aided detector.

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

Low Complexity Antenna Selection based MIMO Scheduling Algorithms for Uplink Multiuser MIMO/FDD System (상향링크 다중사용자 MIMO/FDD 시스템을 위한 낮은 복잡도의 안테나 선택 기반 MIMO 스케줄링 기법)

  • Kim, Yo-Han;Cho, Sung-Yoon;Lee, Taek-Ju;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1164-1174
    • /
    • 2007
  • Antenna selection based MIMO schedulers are proposed to achieve the optimal performance with low complexity in uplink multiuser MIMO/FDD system. In this paper, three heuristic schedulers are proposed to approach the optimal performance which is achieved by the optimal Brute-Force Scheduler. Two search methods called sub-set and full-set way are also discussed to set up the antenna channels to be the candidates of the scheduler. Simulation results show that the sum rate and BER performance of the proposed CSS and SOAS schemes are about the same to that of the brute-force scheduler with affordable complexity, while RC-SOAS with further reduced complexity achieves almost the optimal performance in the case of small number of antennas. Moreover, the complexity can be additionally reduced by the sub-set search method when the number of transmit and receive antennas are 2 respectively, which is applicable in the realistic systems.

Tanner Graph Based Low Complexity Cycle Search Algorithm for Design of Block LDPC Codes (블록 저밀도 패리티 검사 부호 설계를 위한 테너 그래프 기반의 저복잡도 순환 주기 탐색 알고리즘)

  • Myung, Se Chang;Jeon, Ki Jun;Ko, Byung Hoon;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.637-642
    • /
    • 2014
  • In this paper, we propose a efficient shift index searching algorithm for design of the block LDPC codes. It is combined with the message-passing based cycle search algorithm and ACE algorithm. We can determine the shift indices by ordering of priority factors which are effect on the LDPC code performance. Using this algorithm, we can construct the LDPC codes with low complexity compare to trellis-based search algorithm and save the memory for storing the parity check matrix.

Low-Complexity and Low-Power MIMO Symbol Detector for Mobile Devices with Two TX/RX Antennas

  • Jang, Soohyun;Lee, Seongjoo;Jung, Yunho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this paper, a low-complexity and low-power soft output multiple input multiple output (MIMO) symbol detector is proposed for mobile devices with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing mode and spatial diversity mode in single hardware and shows the optimal maximum likelihood (ML) performance. By applying a multi-stage pipeline structure and using a complex multiplier based on the polar-coordinate, the complexity of the proposed architecture is dramatically decreased. Also, by applying a clock-gating scheme to the internal modules for MIMO modes, the power consumption is also reduced. The proposed symbol detector was designed using a hardware description language (HDL) and implemented using a 65nm CMOS standard cell library. With the proposed architecture, the proposed MIMO detector takes up an area of approximately $0.31mm^2$ with 183K equivalent gates and achieves a 150Mbps throughput. Also, the power estimation results show that the proposed MIMO detector can reduce the power consumption by a maximum of 85% for the various test cases.

A Low Complexity and A Low Latency Systolic Arrays for Multiplication in GF($2^m$) Using An Optimal Normal Basis of Type II (타입 II ONB를 이용한 GF($2^m$)상의 곱셈에 대한 낮은 복잡도와 작은 지연시간을 가지는 시스톨릭 어레이)

  • Kwon, Soon-Hak;Kwon, Yun-Ki;Kim, Chang-Hoon;Hong, Chun-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.140-148
    • /
    • 2008
  • Using the self duality of an optimal normal basis(ONB) of type II, we present a bit parallel and bit serial systolic arrays over GF($2^m$) which has a low hardware complexity and a low latency. We show that our multiplier has a latency m+1 and the basic cell of our circuit design needs 5 latches(flip-flops). Comparing with other arrays of the same kinds, we find that our array has significantly reduced latency and hardware complexity.

Moderating Effect of Structural Complexity on the Relationship between Surgery Volume and in Hospital Mortality of Cancer Patients (일부 암 종의 수술량과 병원 내 사망률의 관계에서 구조적 복잡성의 조절효과)

  • Youn, Kyungil
    • Health Policy and Management
    • /
    • v.24 no.4
    • /
    • pp.380-388
    • /
    • 2014
  • Background: The volume of surgery has been examined as a major source of variation in outcome after surgery. This study investigated the direct effect of surgery volume to in hospitals mortality and the moderating effect of structural complexity-the level of diversity and sophistication of technology a hospital applied in patient care-to the volume outcome relationship. Methods: Discharge summary data of 11,827 cancer patients who underwent surgery and were discharged during a month period in 2010 and 2011 were analyzed. The analytic model included the independent variables such as surgery volume of a hospital, structural complexity measured by the number of diagnosis a hospital examined, and their interaction term. This study used a hierarchical logistic regression model to test for an association between hospital complexity and mortality rates and to test for the moderating effect in the volume outcome relationship. Results: As structural complexity increased the probability of in-hospital mortality after cancer surgery reduced. The interaction term between surgery volume and structural complexity was also statistically significant. The interaction effect was the strongest among the patients group who had surgery in low volume hospitals. Conclusion: The structural complexity and volume of surgery should be considered simultaneously in studying volume outcome relationship and in developing policies that aim to reduce mortality after cancer surgery.

A Novel Carrier-to-noise Power Ratio Estimation Scheme with Low Complexity for GNSS Receivers (GNSS 수신기를 위한 낮은 복잡도를 갖는 새로운 반송파 대 잡음 전력비 추정기법)

  • Yoo, Seungsoo;Baek, Jeehyeon;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.767-773
    • /
    • 2014
  • The carrier-to-noise power ratio is a key parameter for determining the reliability of PVT (Position, Velocity, and Time) solutions which are obtained by a GNSS (Global Navigation Satellite System) receiver. It is also used for locking a tracking loop, deciding the re-acquisition process, and processing advanced navigation in the receiver subsystem. The representative carrier-to-noise power ratio estimation schemes are the narrowband-wideband power ratio method (NW), the MM (Moment Method), and Beaulieu's method (BL). The NW scheme is the most classical one for commercial GNSS receivers. It is often used as an authoritative benchmark for assessing carrier-to-noise power estimation schemes. The MM scheme is the least biased solution among them, and the BL scheme is a simpler scheme than the MM scheme. This paper focuses on the less biased estimation with low complexity when the residual phase noise remains, then proposes a novel carrier-to-noise power ratio estimation scheme with low complexity for GNSS receivers. The asymptotic bias of the proposed scheme is derived and compared with others, and the simulation results demonstrate that the complexity of the proposed scheme is lowest among them, while the estimation performance of the proposed scheme is similar to those of the BL and MM schemes in normal and high gained reception environments.

Low Complexity Single Image Dehazing via Edge-Preserving Transmission Estimation and Pixel-Based JBDC (에지 보존 전달량 추정 및 픽셀 단위 JBDC를 통한 저 복잡도 단일 영상 안개 제거)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • This paper presents low-complexity single-image dehazing to enhance the visibility of outdoor images that are susceptible to degradation due to weather and environmental conditions, and applies it to various devices. The conventional methods involve refinement of coarse transmission with high computational complexity and extensive memory requirements. But the proposed transmission estimation method includes excellent edge-preserving performance from comparison of the pixel-based dark channel and the patch-based dark channel in the vicinity of edges, and transmission can be estimated with low complexity since no refinement is required. Moreover, it is possible to accurately estimate transmissions and adaptively remove haze according to the characteristics of the images via prediction of the atmospheric light for each pixel using joint bright and dark channel (JBDC). Comprehensive experiments on various hazy images show that the proposed method exhibits reduced computational complexity and excellent dehazing performance, compared to the existing methods; thus, it can be applied to various fields including real-time devices.