• Title/Summary/Keyword: Low Carbon Society

Search Result 3,317, Processing Time 0.035 seconds

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.

A Survey of water pollution and the development of water treatment system on agricultural Area (농어촌의 수질오염과 수질특성에 적합한 정수 처리시스템의 개발에 관한 연구(1))

  • 정문호;김영규;조태석;배현주;신명옥;김수연;김민지;김민영;김수복
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • The purpose of this study was to investigate the removal effect and variation of contaminated water by various water treatment processes using sediment filter, activated carbon, photocatalysis, reverse osmosis, ultra violet sterilizer and ultra filtration. The removal effect of chloride and trace metal was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon but high in impregnated activated carbon. The removal effect of TCE was low in sand and ultra filter system as compared with activated carbon. Ultra filtration process was effective for purify agricultural water without E.coli. Reverse osmosis was effective to remove heavy metal and activated carbon was effective to remove halogenated organic chemical compound. The flux and the removal effect of COD in spiral wound ultrafilter were higher than the hollow fiber ultrafilter.

  • PDF

A Comparative Study on Low-Carbon Port Management of Busan and LA/LB - On the Basis of Port Management Cost - (LA/LB항과 부산항의 저탄소 항만운영에 관한 비교연구 - 비용부담을 중심으로 -)

  • Cho, Dong-Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.223-228
    • /
    • 2010
  • In the midst of worldwide response to climate change, the advanced ports including LA/LB(Los Angeles/Long Beach) has started to reduce carbon emission from port area which has not been targets of interests in the worldwide cooperation. Recently, the Port of Busan has started to reduce carbon emission from the port area under the Green Port Strategy in Korea. However, the low-carbon port management increases the cost of port management and negatively impacts the port competitiveness in the short term. Therefore, the Busan Port Authority is carrying out the low-carbon projects directly and has not transfer the cost to the port users, such as shipowers, cargo owners and terminal operators. However, the Port Authority of LA/LB has transferred the cost at low-carbon port management to customers of port. In this study, comparative analysis on cost of low-carbon port management at Busan and LA/LB is carried out for sustainable port management.

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

Economic analysis of development of low-carbon trawl gear (탄소저감형 트롤어구 개발의 경제성 분석)

  • Park, Seong-Wook;Lee, Kyoung-Hoon;Kang, Min-Ju;Park, Seong-Kwae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.360-369
    • /
    • 2012
  • The main purpose of this study is to analyse economic feasibility of low-carbon-oriented trawl gear. The results of benefit/cost analysis showed that use of the low-carbon fishing gear is economically feasible. Considering the fuel saving and relatively low $CO_2$ emission by reducing the resistance of gear, net present value by such gear improvement was estimated about 2,430~2,853 million won with the benefit-cost ratio 1.65~1.84 and the internal rate of return 29.18~30.48 percent. Development of low-carbon trawl gear would render significant contributions to reducing $CO_2$ emission in fishing operations and lead to reduce fishing costs due to fuel savings.

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

High power $CO_2$ laser beam welding for low carbon steels (저탄소강의 고출력 $CO_2$ 레이저 빔 용접)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.12-21
    • /
    • 1989
  • Laser beam welding parameters have experimentally investigated, using a continuous wave 3kW $CO_2$ laser with the various travel speeds, beam mode and laser beam power in low carbon steels. An optimum position of focus and the effect of shielding gas on penetration depth with varying the flow range of 0.5 to 5.1m/min have been combined to investigate the effect of laser power and travel speed on penetration depth and bead width. It is found that the optimum position of focus in 3kW class laser is 0.5 to 1.5mm below the surface of the material. The flow rate of shielding gas affects the penetration depth and He is more effective than Ar. The penetration depth in laser welds of low carbon steels is between two and four times of the bead width. Laser beam welding of butt joints in 2mm thick carbon steel has been carried out to establish a weldability lobe. The lobe indicating acceptable welding conditions is introduced.

  • PDF

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Friction Properties of Carbon Coated Ultra-thin Film using Taguchi Experimental Design (다구찌 실험계획법을 이용한 탄소코팅 초박막의 마찰특성)

  • 안준양;김대은;최진용;신경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.143-150
    • /
    • 2003
  • Frictional properties of ultra-thin carbon coatings on silicon wafer were investigated based on Taguchi experimental design method. Sensitivity analysis was performed with normal load, relative humidity, deposition process, and coating thickness as the variables. It was found that despite low thickness, the carbon coating resulted in relatively low friction coefficient. Also, the frictional behavior was affected significantly by humidity and normal load.