• Title/Summary/Keyword: Love's thin shell theory

Search Result 13, Processing Time 0.029 seconds

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj;Mohammad Amien Khadimallah;Shahzad Ali Chattah;Ikram Ahmad;Sami Alghamdi;Muzamal Hussain;Rana Muhammad Akram Muntazir;Faisal Al-Thobiani;Muhammad Safeer;Muhammad Naeem Mohsin;Faisal Mehmood Butt;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.243-254
    • /
    • 2023
  • Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

Vibration Analysis of Ring Stiffened Cylindrical Shells with a Rectangular Cutout (사각개구부를 갖는 링보강 원통셸의 진동해석)

  • Kim, Yeong-Wan;Lee, Yeong-Sin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2040-2049
    • /
    • 1999
  • The Rayleigh-Ritz method is used to investigate the natural frequencies and mode shapes of the ring stiffened cylindrical shells with a rectangular cutout. The cutout is located on the center of the shell. The Love's thin shell theory combined with the discrete stiffener theory is adopted to formulate the analytical model of the shell. The effect of stiffener eccentricity, number, and position on vibration characteristics of the shell is examined. Also the effect of cutout size is examined. By comparison with previously published analytical and new FEM results, it is shown that natural frequencies and mode shapes can be determined with adequate accuracy.

Free Vibration of Composite Cylindrical Shells with a Longitudinal, Interior Rectangular Plate (내부에 사각판이 결합된 복합재료 원통쉘의 자유진동)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.65-79
    • /
    • 1999
  • This paper descrives the method to analyzed the free vibratioin of supported composite cylindrical shells with a longitudinal, interior rectangular plate. To obtain the free vibration characteristics before the combination of two structures, the energy principle based on the classical plate theory and Love's thin shell theory is adopted. The frequency equation of the combined system is formulated using the receptance method. When the line load and moment applied along the joint are assumed as the the Dirac delta and sinusolidal function, the continuity conditions at the joint of the plate and shell are proven to be satisfied. The effects on the combined shell frequencies of the length-no-radius ratios and radius-to-thickness ratios of the shell, fiber orientation angles and orthotropic modulus ratios of the composite are also examined.

  • PDF

Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions (다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성해석)

  • 이영신;김영완;최명환;류충현;신도섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The effects of boundary conditions on natural frequencies for the ring stiffened composite cylindrical shells are investigated by theoretical method. The Love's thin shell theory and the discrete stiffener theory with beam functions in the Ritz procedure are used to derive the frequency equation. Five different boundary conditions such as clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study. Also, the experimental investigation is presented to validate the theoretical results.

  • PDF

Transient Analysis of Composite Cylindrical Shells with Ring Stiffeners (링보강 복합재료 원통셸의 과도해석)

  • Kim, Yeong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1802-1812
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure Loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The results are verified by comparison with FEM results.

Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions (다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성)

  • 김영완;이영신
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.485-492
    • /
    • 1999
  • The effects of boundary conditions on vibration characteristics for the ring stiffered composite cylindrical shells are investigated by theoretical and experimental method. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect are adopted to derive the frequency equation. In experiment, the impact exciting method is used to obtain the vibraton results. Five different boundary conditions: clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study.

  • PDF

Transient Response of Composite Cylindrical Shells with Ring Stiffeners (링보강 복합재료 원통셸의 과도응답)

  • Kim, Young-Wann;Chung, Kang;Park, Kyung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.883-888
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The theoretical results are verified by comparison with FEM results.

  • PDF

Free Vibration Analysis of Combined Cylindrical Shells with an Annular Plate Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 자유진동해석)

  • Chung Kang;Kim Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.439-446
    • /
    • 2005
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

Study on Structural Vibration Analysis and Design Optimization of Rotating Composite Cylindrical Shells with Cutout (회전운동을 고려한 Cutout이 있는 복합재료 원통셸의 구조진동해석 및 최적설계)

  • 이영신;김영완
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.467-476
    • /
    • 1998
  • The free vibration analysis and design optimization of the rotating composite cylindrical shells with a rectangular cutout are investigated by theoretical method. The Love's thin shell theory is used to derive the frequency equation. The theoretical results are obtained by application of the energy method employing the Rayleigh-Ritz procedure. The used circumferential vibration modes are trigonometric functions, the axial modes are the beam modal functions chosen to satisfy the prescribed boundary conditions. To check the validity, the theoretical results are compared with experimental, FEM and other theoretical results.

  • PDF