• 제목/요약/키워드: Loss-of-coolant accident

검색결과 204건 처리시간 0.04초

냉각재(冷却材) 상실사고시(喪失事故時) 1300 MWe 급(級) PWR원전(原電) 주제어실(主制御室)의 선량평가(線量評價) (A Control Room Dose Assessment for a 1300 MWe PWR Following a Loss of Coolant Accident)

  • 장시영;하정우
    • Journal of Radiation Protection and Research
    • /
    • 제14권1호
    • /
    • pp.34-45
    • /
    • 1989
  • 프랑스의 1300 MWe 급(級) 표준(標準) P'4형 PWR 원전(原電)의 일차냉각재상실사고(一次冷却材喪失事故)(LOCA)시(時) 원전(原電) 주제어가내(主制御家內) 운전원(運轉員)에 대한 고사선(故射線) 피습선량(被濕線量)을 계산하여 주제어실(主制御室)의 체류안전성(滯留安全性)을 평가(評價)하였다. 본(本) 평가(評價)에서 사용(使用)된 제가정(諸假定)은 프랑스의 표준안전성분석보고서(漂準安全性分析報告書)에 따랐다. 본(本) 평가(評價)를 위하여 LOCA 사고시(事故時) 원자로건물외(原子爐建物外)로 방출(放出)되는 방사핵종(放射核種)의 방사능(放射能), 주제어실(主制御室)에서의 체적인자(體積因子) 및 제어실내(制御室內) 운전원(運轉員)의 전신(全身) 및 갑상선(甲狀膳) 피폭선량(被爆線量)을 사고발생후(事故發生後) 30일까지 전산(電算)할 수 있는 간단한 전산(電算)프로그램, COREX를 개발(開發)하였다. 본(本) 연구(硏究)에서 얻어진 계산결과(計算結果)는 대체적으로 프랑스의 EDF(불란서 전력주식회사(電力株式會社) 에서 제안(提案)한 결과(結果)와 대체적으로 잘 일치(一致)하였으나, 전신외부피폭선량(全身外部被爆線量)의 값은 일부(一部) 체적인자(體積因子) 값의 차이로 인(因)하여 일부 편차(偏差)를 보였다.

  • PDF

직무 네트워크 모형을 이용한 원자력발전소 제어실 운전원들의 수행도분석 (Performance analysis of operators in a nuclear power plant control room using a task network model)

  • 서상문;천세우;이용희
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1993년도 추계학술대회논문집
    • /
    • pp.21-30
    • /
    • 1993
  • This paper describes the development of a simulation model of nuclear power plant operators including cognitive aspects by using a network modeling soft ware, Micro-SAINT (System Analysis of Integrated Networks of Tasks) for the analysis of operator performance. Network model description based on Micro-SAINT includes tasks, resources, precedence relations among tasks, flow of information and PSFs (Performance Shaping Factors) on task performance. We have tried to evaluate the performance with several performance measures such as the number of tasks allocated, relative time presure among operators within a shift, for the selected test accident scenarior; small-break LOCA (Loss of Coolant Accident) in a PWR (Pressurized Water Reactor) type nuclear power plant.

  • PDF

Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method

  • Fang Zhao ;Shuliang Zou ;Shoulong Xu ;Junlong Wang;Tao Xu;Dewen Tang
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4560-4570
    • /
    • 2022
  • Dynamic fault tree (DFT) and its related research methods have received extensive attention in safety analysis and reliability engineering. DFT can perform reliability modelling for systems with sequential correlation, resource sharing, and cold and hot spare parts. A technical modelling method of DFT is proposed for modelling ship collision accidents and loss-of-coolant accidents (LOCAs). Qualitative and quantitative analyses of DFT were carried out using the cutting sequence (CS)/extended cutting sequence (ECS) method. The results show nine types of dynamic fault failure modes in ship collision accidents, describing the fault propagation process of a dynamic system and reflect the dynamic changes of the entire accident system. The probability of a ship collision accident is 2.378 × 10-9 by using CS. This failure mode cannot be expressed by a combination of basic events within the same event frame after an LOCA occurs in a marine nuclear reactor because the system contains warm spare parts. Therefore, the probability of losing reactor control was calculated as 8.125 × 10-6 using the ECS. Compared with CS, ECS is more efficient considering expression and processing capabilities, and has a significant advantage considering cost.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

사용후핵연료 저장 시설의 중대사고 안전성 검토

  • 신태명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.331-336
    • /
    • 2011
  • When the Fukushima nuclear power plant accident occurred in March, a hydrogen explosion in the reactor building at the 4th unit of Fukushima plants lead to a big surprise because the full core of the unit 4 reactor had been moved and stored underwater at the spent nuclear fuel storage pool for periodic maintenance. It was because the potential criticality in the fuel storage pool by coolant loss may yield more severe situation than the similar accident happened inside the reactor vessel. In the paper, the safety state of the spent fuel storage pool and rack structures of the domestic nuclear plants would be reviewed and compared with the Fukushima plant case by engineering viewpoint of potential severe accidents.

  • PDF

Modelling of CANDU NPP Reactor Regulating System using CATHENA

  • Cho, Cheon-Hwey;Kim, Hee-Cheol;Park, Chul-Jin;Lee, Sang-Yong;A.C.D. Wright
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.579-585
    • /
    • 1996
  • A CATHENA model for the reactor regulating system is developed and tested independently. A CATHENA plant model is created by combining this model with the reference CATHENA model which has been developed to analyze a loss-of-coolant accident (LOCA) for the Wolsong 2 generating station. This model is intended to provide a trip coverage analysis capability. The CATHENA reactor regulating system model includes the demand power routine. the light water zone control absorbers, mechanical control absorbers and adjusters. The CATHENA model is tested for steady state at 103% full power. A postulated accident transient (small LOCA) was also tested. The results show that the control routines in CATHENA were set up properly.

  • PDF

원자력발전소의 노심냉각회복 조치에 대한 운전원 조치시간 평가 (An Evaluation of Operator's Action Time for Core Cooling Recovery Operation in Nuclear Power Plant)

  • 배연경
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.229-234
    • /
    • 2012
  • Operator's action time is evaluated from MAAP4 analysis used in conventional probabilistic safety assessment(PSA) of a nuclear power plant. MAAP4 code which was developed for severe accident analysis is too conservative to perform a realistic PSA. A best-estimate code such as RELAP5/MOD3, MARS has been used to reduce the conservatism of thermal hydraulic analysis. In this study, operator's action time of core cooling recovery operation is evaluated by using the MARS code, which its Fussell-Vessely(F-V) value was evaluated as highly important in a small break loss of coolant(SBLOCA) event and loss of component cooling water(LOCCW) event in previous PSA. The main conclusions were elicited : (1) MARS analysis provides larger time window for operator's action time than MAAP4 analysis and gives the more realistic time window in PSA (2) Sufficient operator's action time can reduce human error probability and core damage frequency in PSA.

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.