• Title/Summary/Keyword: Loss-of-coolant Accident (LOCA)

Search Result 106, Processing Time 0.021 seconds

FUEL BEHAVIOR UNDER LOSS-OF-COOLANT ACCIDENT SITUATIONS

  • CHUNG HEE M.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.327-362
    • /
    • 2005
  • The design, construction, and operation of a light water reactor (LWR) are subject to compliance with safety criteria specified for accident situations, such as loss-of-coolant accident (LOCA) and reactivity-initiated accident (RIA). Because reactor fuel is the primary source of radioactivity and heat generation, such a criterion is established on the basis of the characteristics and performance of fuel under the specific accident condition. As such, fuel behavior under accident situations impact many aspects of fuel design and power generation, and in an indirect manner, even spent fuel storage and management. This paper provides a comprehensive review of: the history of the current LOCA criteria, results of LOCA-related investigations on conventional and new classes of fuel, and status of on-going studies on high-burnup fuel under LOCA situations. The objective of the paper is to provide a better understanding of important issues and an insight helpful to establish new LOCA criteria for modem LWR fuels.

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

A Study on the Two Phase Flow in the Floor of Containment Building after a Loss of Coolant Accident (냉각재 상실사고 후 격납건물내의 이상유동 연구)

  • Bae, Jin-Hyo;Park, Man Heung;Koh, Chul-Kyun;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1274-1284
    • /
    • 1999
  • The Regulatory Guide 1.82 recommends an analysis of hydraulic performance for sump of ECCS (Emergency Core Cooing System) when LOCA(Loss of Coolant Accident) occurs in a nuclear power plant. The present study deals with 3-dimensional, unsteady, turbulent and two-phase flow simulation to examine the behavior of mixture of reactor coolant and debris near the floor of containment building in conjunction with appropriate assumptions. The dispersed solid model has been adjusted to the interfacial momentum transfer between reactor coolant and debris. According to the results, the counterclockwiserecirculation zone had been formed in the region between sump and connection aisle about 376 second after LOCA occurs. The debris thickness accumulated on a sump screen periodically increases or decreases up to 2000 second, afterwards its peak decreases.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari;Ataollah Rabiee;Farshad Faghihi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

A Study on Loss of Coolant Accident in Nuclear Power Plant Using DOE (실험계획법을 이용한 원자력 발전소에서의 냉각제 상실사고에 대한 연구)

  • Leem Young-Moon;Lee Sung-Mo
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.85-99
    • /
    • 2005
  • The main objective of this paper is to search whether containment vessel's best pressure may increase until how long when loss of coolant accident (LOCA) happened in containment vessel of Ulchin nuclear power plant 1 and 2. Another goal of this research is to find the influential factors that increase containment vessel pressure. Model for this research is Ulchin nuclear power plant 1 with 10 cycles. Data were collected by simulator of Ulchin nuclear power plant 1 and design of experiment was used for data analysis. For the experiment, seven factors that are going to influence in containment vessel pressure were chosen. It was found that fatter which influences in early rise of containment vessel pressure after LOCA is only explosion size. Also, containment vessel's best pressure (3.74 bar.a) was much lower than limit (4.86 bar.a) of FSAR (Final Safety Analysis Report).

The corrosion of aluminium alloy and release of intermetallic particles in nuclear reactor emergency core coolant: Implications for clogging of sump strainers

  • Huang, Junlin;Lister, Derek;Uchida, Shunsuke;Liu, Lihui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1345-1354
    • /
    • 2019
  • Clogging of sump strainers that filter the recirculation water in containment after a loss-of-coolant accident (LOCA) seriously impedes the continued cooling of nuclear reactor cores. In experiments examining the corrosion of aluminium alloy 6061, a common material in containment equipment, in borated solutions simulating the water chemistry of sump water after a LOCA, we found that Fe-bearing intermetallic particles, which were initially buried in the Al matrix, were progressively exposed as corrosion continued. Their cathodic nature $vis-{\grave{a}}-vis$ the Al matrix provoked continuous trenching around them until they were finally released into the test solution. Such particles released from Al alloy components in a reactor containment after a LOCA will be transported to the sump entrance with the recirculation flow and trapped by the debris bed that typically forms on the strainer surface, potentially aggravating strainer clogging. These Fe-bearing intermetallic particles, many of which had a rod or thin strip-like geometry, were identified to be mainly the cubic phase ${\alpha}_c-Al(Fe,Mn)Si$ with an average size of about $2.15{\mu}m$; 11.5 g of particles with a volume of about $3.2cm^3$ would be released with the dissolution of every 1 kg 6061 aluminium alloy.