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a b s t r a c t

Operators of nuclear power plants may not be equipped with sufficient information during a

loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to

analyze the information they do have, even if this information is adequate. It is not easy to

predict theprogressionof LOCAs innuclear power plants. Therefore, accurate informationon

theLOCAbreakpositionandsize shouldbeprovided toefficientlymanage theaccident. In this

paper, the LOCAbreak size is predicted using a cascaded fuzzy neural network (CFNN)model.

The input data of theCFNNmodel are the time-integratedvalues of eachmeasurement signal

for an initial short-time interval after a reactor scram. The training of the CFNN model is

accomplished by a hybrid method combined with a genetic algorithm and a least squares

method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Because of continuously increasing energy demands, many

nuclear power plants (NPPs) are in operation globally. Many of

these NPPs have been in long-term operation, and may be

slightly more vulnerable to accidents, such as loss-of-coolant

accidents (LOCAs), because the pipes in these plants can be

weak. NPPs automatically operate emergency core cooling

systems, such as safety injection systems (SISs), when a LOCA

occurs. The emergency core cooling systems might not func-

tion properly in case of a LOCA with a small break size, due to

high pressure keeping in the pipes. Additionally, when an

accident occurs in an NPP, the plant operators may have only

incomplete information or may not have sufficient time to

analyze the accident even though they are provided enough

information. In these cases, operatorsmust analyze abnormal

plant conditions using temporary trends of important pa-

rameters from the time of the accident's occurrence. However,

they may have difficulty in predicting the accident looking at

the displayed temporary trend of parameters accessible from

the main control room [1]. If the operators were offered in-

formation on the LOCA break size immediately after the

LOCA, they could minimize the damage caused by the LOCA.

Therefore, this study estimates the LOCA break size.

A number of artificial intelligence techniques characterized

as machine learning has been applied successfully to many

nuclear engineering areas, such as signal validation [2e4],

plant diagnostics [5e8], and smart sensing (or function

approximation) [9e11]. In this study, a cascaded fuzzy neural

network (CFNN) model with a machine learning function was

utilized to predict the LOCA break size. The CFNN model pre-

dicts the LOCA break size by a repetitively performed analysis
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using continuously connected fuzzy neural network (FNN)

modules. In effect, the CFNN is an extension of the FNN [12].

The CFNNmodel based on artificial intelligence requires ac-

quired data for its development and verification. Because a va-

riety of real LOCA accident data cannot be obtained from actual

NPP accidents, the data used herein were obtained by numeri-

cally simulating severe accident scenarios of an optimized

power reactor (OPR1000) using Modular Accident Analysis Pro-

gram (MAAP) code (Fauske& Associates, Burr Ridge, IL, USA).

2. CFNN methodology

2.1. CFNN model

The CFNN model consists of more than two FNN modules, of

which each stage corresponds with a single-stage FNN mod-

ule. The FNN model is a combination of a fuzzy inference

system and neuronal training. In the usual fuzzy inference

system that is called the Mamdani fuzzy model [13], the “if”

part is fuzzy linguistic and the “then” part is fuzzy linguistic,

too, which requires a defuzzification process since the LOCA

break size estimation problem at hand has the input and

output of real values. In this study, a TakagieSugeno type

fuzzy model is used in which the “if” part is fuzzy linguistic,

while the “then” part is crisp [14]. Therefore, the Taka-

gieSugeno type fuzzy inference system does not need a

defuzzifier in the output terminal. The TakagieSugeno type

fuzzy inference system can be described as follows:

If s1ðtÞ is Ai1 AND/AND smðtÞ is Aim; then

~yi ¼ fi½s1ðtÞ; L; smðtÞ�
(1)

Most studies using the FNN models have suggested

different types of single-stage fuzzy reasoning mechanisms.

However, single-stage fuzzy reasoning is the simplest among

the various human reasoning mechanisms. Syllogistic fuzzy

reasoning, where the results of a rule in preceding stage is

passed to the current stage as a fact, could effectively accu-

mulate a grand-scale system with high-level knowledge [15].

Because the CFNN model is expected to offer a better perfor-

mance thanasimpleFNNmodel, this studyusedaCFNNmodel

based on syllogistic fuzzy reasoning. Eq. (2) shows the Taka-

gieSugeno-type fuzzy inference system of the CFNNmodel.

Stage 1

"
If s1ðtÞ is A1

i1ðtÞ AND/AND smðtÞ is A1
imðtÞ;

then ~y1
i ðtÞ ¼ f 1i ½s1ðtÞ;/;smðtÞ�

#

Stage 2

2
664

If s1ðtÞ is A2
i1ðtÞ AND/AND smðtÞ is A2

imðtÞ
AND ~y1ðtÞ is A2

iðmþ1ÞðtÞ;
then ~y2

i ðtÞ ¼ f 2i
�
s1ðtÞ;/;smðtÞ;~y1ðtÞ�

3
775

«

Stage l

2
6664

If s1ðtÞ is Al
i1ðtÞ AND/AND smðtÞ is Al

imðtÞ;
AND ~y1ðtÞ is Al

iðmþ1ÞðtÞ AND/AND ~yl�1ðtÞ is Al
iðmþl�1ÞðtÞ;

then ~yl
iðtÞ¼ f li

�
s1ðtÞ;/;smðtÞ;~y1ðtÞ;/;~yl�1ðtÞ�

3
7775

Fact :s1ðtÞ is A1
i1ðtÞ AND/AND smðtÞ is A1

imðtÞ
Consequent : ~yl

iðtÞ¼ f li
�
s1ðtÞ;/;smðtÞ;~y1ðtÞ;/;~yl�1ðtÞ�

(2)

where sjðtÞ: FIS input value (j¼1;2;/;m);Ak
ijðtÞ: fuzzy set for the

ith fuzzy rule (i¼1;2;/;n) and the jth input variable at the kth

stage ðk¼1;2;/;lÞ; ~yk
i ðtÞ: ith fuzzy rule output at the kth stage;

~ykðtÞ: CFNN model output at the kth FNN module; l: number of

FNNmodules;m: number of input variables; and n: number of

fuzzy rules.

The number of input and output training data, T, of the

fuzzy model in Eq. (3) are assumed to be available, and each

data point is assumed to be a normalized value.

cTðtÞ ¼ �
sTðtÞ; ~yðtÞ� (3)

where

sTðtÞ ¼ ½s1ðtÞ; s2ðtÞ;/; smðtÞ�; t ¼ 1;2;/;T:

In the function in Eq. (2), the output of an arbitrary ith

rule,fi½sðtÞ�, is made of the first-order polynomial of inputs as

given in Eq. (4).

fi½sðtÞ� ¼
Xm

j¼1

qijsjðtÞ þ oi (4)

where qij: weight of the ith fuzzy rule and jth input variable; and

oi: bias of the ith fuzzy rule.

The CFNNmodel structure contains serially connected FNN

modules. Therefore, only the first FNN module will be

explained. The process of the first-stage FNNmodule is shown

in Fig. 1. Each stage is composed of six layers. The first layer is

composed of the input nodes that transfer input values to the

First stage

Second stage

Fig. 1 e First stage fuzzy neural network module.
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second layer. Each output from the first layer is transferred to

the inputs of the membership function. The membership

function of fuzzy sets AijðtÞ is denoted as Gij½sjðtÞ�. In this study,

the simple symmetric Gaussianmembership function in Eq. (5)

is applied to lower the number of parameters to be optimized

compared with the asymmetric Gaussian membership func-

tions. It has a characteristic symmetric bell curve shape that

tends to zero. The second layer is the fuzzification layer, which

calculates the membership function values using Eq. (5).

Gij

�
sjðtÞ

� ¼ e
�

�
sjðtÞ � xij

�2
2s2

ij (5)

where xij: center position of the peak; and sij: width of the bell

shape.

The third layer in Fig. 1 carries out the fuzzy inference

system, and each node in this layer multiplies the member-

ship function values from the second layer and the output of

this layer is given by the product as Eq. (6). The fourth layer

performs normalization using Eq. (7).

ui½sðtÞ� ¼ P
m

j¼1
Gij

�
sjðtÞ

�
(6)

uiðtÞ ¼ ui½sðtÞ�Pn
i¼1 u

i½sðtÞ� (7)

The fifth layer in Fig. 1 generates the output values of each

fuzzy “ifethen” rule. Finally, the sixth layer aggregates all the

fuzzy “ifethen” rules and is expressed as Eq. (8):

~yðtÞ ¼
Xn

i¼1

uiðtÞyiðtÞ ¼
Xn

i¼1

uiðtÞfi½sðtÞ� ¼ uTðtÞq (8)

where

uðtÞ ¼ ½u1ðtÞs1ðtÞ/unðtÞs1ðtÞ//u1ðtÞsmðtÞ/unðtÞsmðtÞ
u1ðtÞ/unðtÞ�T; and q ¼ ½q11/qn1//q1m/qnm o1/on�T.

Vector q presents a consequent parameter vector with a

dimension of ðmþ 1Þ � n and vector uðtÞ consist of the input

data and membership function values. Therefore, the esti-

mated output of T input and output training data induced

from Eq. (8) can be expressed as Eq. (9).

~yt ¼ Utq (9)

where ~yt ¼ ½~yð1Þ ~yð2Þ/~yðTÞ�T; and Ut ¼ ½uð1Þ uð2Þ/uðTÞ�T.
Matrix Ut has a dimension of ½ðmþ 1Þ � n� � T.

The second-stage FNN module utilizes the initial input data

and the output of the first-stage FNN module as its input vari-

ables. This process is repeated l times to find the optimum

outputvalue.Fig. 2presents thearchitectureof theCFNNmodel.

2.2. CFNN optimization

The CFNNmodel thatwas developed to estimate a LOCA break

size is optimized by using the specified training data. The

optimization method combines a genetic algorithm and the

least squares method. The antecedent parameters in the

membership function in Eq. (5) are optimized by a genetic

algorithm. The consequent parameters in Eq. (4) are optimized

by the least squares method [12]. In the genetic algorithm, the

following fitness function is proposed tominimize root-mean-

square (RMS) errors:

F ¼ exp½�lðEt þ 2EvÞ� (10)

where: Et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1½yðtÞ � ~yðtÞ�2

q
; Ev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V

PTþV
t¼Tþ1½yðtÞ � ~yðtÞ�2

q
;

l: weight value of the RMS error; T: number of training data;

V: number of verification data; yðtÞ: target output value; and
~yðtÞ: estimated value by CFNN.

As shown in Eq. (10), the RMS term of the verification data

is overweighed two times more than that of the training data,

to mitigate the overfitting problem. If the antecedent param-

eters are decided by a genetic algorithm through genetic op-

erations such as selection, crossover, and mutation, the

consequent parameters appear similarly to Eq. (9) as first-

order combinations. Consequent parameter q is optimized

by the least squares method and is computed to minimize the

objective function represented by the squared error between

target value yðtÞ and estimated value ~yðtÞ [16].

J ¼
XT
t¼1

½yðtÞ � ~yðtÞ�2 ¼
XT
t¼1

�
yðtÞ � uTðtÞq�2

¼ 1
2

�
yt � ~yt

�2
(11)

where yt ¼ ½yð1Þ yð2Þ/yðTÞ�T.
The solution for minimizing the objective function in Eq.

(11) is calculated by the following equation:

yt ¼ Utq (12)

where

Ut ¼ ½uð1Þ uð2Þ/uðTÞ�T:
Parameter vector q in Eq. (11) is solved using the pseudo-

inverse as follows:

q ¼ �
UT

t Ut

��1
UT

t yt: (13)

Parameter vector q is composed of a series of input data,

output data, and their membership function values, because

matrix Ut comprises the input data and membership function

values, and yt contains the output data. Fig. 3 presents the

optimization procedure of the CFNN model. Fig. 4 depicts a

data structure used in developing the CFNN model.

The complexity of the CFNN model is supposed to be pro-

portional to the number of elements in parameter vector q in

Eq. (13). Therefore, its complexity is defined as the number of

First stage
Second stage

Fig. 2 e Typical diagram of the cascaded fuzzy neural

network (FNN) model.
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elements in parameter vector q of all FNN modules contained

in the CFNN and is calculated as follows [12]:

Complexity ¼ lðlþ 2mþ 1Þn
2

(14)

where l: number of FNN modules; m: number of input vari-

ables; and n: number of fuzzy rules.

The complexity of the CFNN model radically increases as

the number of FNN modules increases and linearly increases

according to the number of fuzzy rules.

The CFNN model might encounter problems with over-

fitting. When an overfitting sign occurs, the process of adding

FNN modules will stop. The overfitting problem can be

resolved through cross-checking using the data structure

shown in Fig. 4 [16]. A criterion used to evaluate whether

overfitting has occurred at stage k is expressed as the sum of

the errors for the verification data as follows:

FðkÞ ¼
XV
t¼Tþ1

�
yðtÞ � ~ykðtÞ�2: (15)

The training and checking processes stop if Fðkþ 1Þ> FðkÞ
(refer to Fig. 5), whichmeans that the errors of the verification

data increase according to the increase in the number of

stages. When the condition ½Fðkþ 1Þ> FðkÞ� is satisfied, the

CFNN model may begin to become overfit if the process of

adding FNN modules continues. If this condition is not satis-

fied, the algorithm moves to the next stage, and an FNN

module is added. Further, the complexity defined in Eq. (14)

that is proportional to the square of the number of stages

should be smaller than the number of training data to prevent

the potential ill-posed problem related to the pseudoinverse in

Eq. (13). The CFNN model with l FNN modules that satisfy

these two conditions is drawn in Fig. 2.

3. Estimation of the LOCA break size

The used data were obtained by simulating the MAAP code for

the LOCA scenarios of the OPR1000 that is a pressurized water

reactor developed in Korea. It is plain that the MAAP code will

have inaccuracies in the simulation results. In order to assess

Fig. 3 e Optimization procedure for the cascaded fuzzy

neural network (CFNN) model.

Output Inputs

Training
dataset

Development
dataset

Verification
dataset

Test
dataset

Fig. 4 e Data structure for developing and testing the cascaded fuzzy neural network (CFNN) model.
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this inaccuracy, many researchers have analyzed the simu-

lation results of MAAP code including other thermal hydraulic

codes. Lindholm et al. [17] examined core refloodings with

three severe accident analysis computer codes, such asMAAP,

MELCOR, and SCDAP/RELAP5, and reported that all the three

codes predicted similar trends with relation to the thermal

hydraulic phenomena at the reflood phase. Allison [18] also

compared the simulation results of MAAP with results using

MELCOR and SCDAP/RELAP5 for large break LOCA events. This

study showed similar results in the early phase, even though

usermodels influenced the simulation results in a later phase.

The LOCA break position could not be detected. Therefore,

the break position needs to be identified and predicted. In

previous studies [1,19], the LOCA break positions were accu-

rately identified. These simulations comprised 600 cases of

severe accident scenarios. The data consisted of 200 hot-leg

LOCAs, 200 cold-leg LOCAs, and 200 steam generator tube

Fig. 5 e Fractional error F kð Þ according to stage number.

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

Es
tim

at
ed

 si
ze

 (m
2 )

Break size (m2)

 Target 
 Estimation

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

Es
tim

at
ed

 si
ze

 (m
2 )

Break size (m2)

 Target
 Estimation

(A)

(B)

Fig. 6 e Estimation performance of the cascaded fuzzy

neural network model for hot-leg loss-of-coolant

accidents. (A) Estimated break size for development data.

(B) Estimated break size for test data.
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Fig. 7 e Estimation performance of the cascaded fuzzy

neural network model for cold-leg loss-of-coolant

accidents. (A) Estimated break size for development data.

(B) Estimated break size for test data.
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ruptures (SGTRs). The 600 accident simulations are divided into

development simulation data and test simulation data in Fig. 4.

The development data are used to devise and optimize the

CFNNmodel, and the test data are used to independently verify

the CFNN model. Therefore, a total of 570 simulations for

development of the CFNN model is composed of each 190

simulations at the hot-leg LOCA, cold-leg LOCA, and SGTR. The

remaining 30 simulations for verifying the CFNNmodel consist

of each 10 simulations at the hot-leg LOCA, cold-leg LOCA, and

SGTR, and are used as test data. The test data were picked at a

fixed interval when the acquired data was sorted according to

the LOCA break size. Information on the LOCA break size of the

selected test data is shown in Figs. 6B, 7B, and 8B.

The accidents have different break positions and sizes. The

inner diameters of the hot-leg and cold-leg pipes are 1.0668 m

and 0.762 m, respectively, and the inner diameter of a steam

generator tube is 0.0169 m. The break size of the hot-leg and

cold-leg pipes ranges from a minimum of 1/400 of their guillo-

tine break to a maximum of half of the guillotine break. The

break sizeof SGTR ranges from11SGTRs to 210 SGTRs. The data

were recognized by the simulated sensor signals that are

collected from these simulations and compose a total of 13

signals: temperature of core exit, pressure and temperature in

containment, pressure and water level in pressurizer, sump

water level, reactor pressure vessel water level, pressure, and

temperature inbrokensidesteamgenerator (S/G),water level in

brokensideS/G, pressure and temperature in theunbrokenside

S/G, andwater level in the unbroken side S/G. The pressure and

temperature in containment are computed values at a center

position of containment that is known as an upper compart-

ment below the containment dome. OPR1000 has two S/Gs. The

terms “brokensideS/G”and “unbrokensideS/G” conformto the

twoS/Gs that are connected to the brokenhot-leg (or cold-leg or

SGTs) and the unbroken hot-leg (or cold-leg or SGTs), respec-

tively [1]. The input data variables to the CFNN are the time-

integrated values of 13 simulated sensor signals as follows:

xj ¼
ZtsþDt

ts

gjðtÞdt; j ¼ 1;2;/;13 (16)

where yjðtÞ: specific simulated sensor signal; ts: scram time

point; and Dt: integration time span.

The integration time span in Eq. (16) is 60 s, which means

that the CFNN uses the time-integrated signals over a 60-

second time interval immediately after the reactor scram.

Since the estimation error of the CFNN was only a little sen-

sitive to the integration time span, the integration time span

was determined by considering the estimation error. Also,

because a variety of transients can be induced due to safety

systemactuation if the integration time is long, the integration

time span was decided to be as short as possible so that the

transients of the used signals are affected as little as possible.

The CFNN model did not use all of the 13 acquired signals.

All data (13 signals) trenddifferently as a result of the initiating

events having different break sizes, which means that any of

them can be selected as an input for the CFNN model to esti-

mate the LOCA break size. The input data are selected by

considering the correlation between the time-integrated

values of the simulated sensor signals and the break size.

The sensor signals with high correlation with the output data

(breaksize) are selectedas the inputdata.TheCFNNmodelwas
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Fig. 8 e Estimation performance of the cascaded fuzzy

neural network model for steam generator tube ruptures.

(A) Estimated break size for development data. (B)

Estimated break size for test data.

Table 1 e Input signals for estimating the loss-of-coolant
accidents break size using a cascaded fuzzy neural
network.

Break position Simulated input signals

Hot-leg Pressure in containment, temperature

in containment, pressure in pressurizer,

water level in pressurizer, pressure in a

broken side S/G

Cold-leg

SGT Temperature in containment, RPV water

level, water level in a broken side S/G,

pressure in a broken side S/G, water

temperature in an unbroken side S/G

RPV, reactor pressure vessel; S/G, steam generator; SGT, steam

generator tube.
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optimizedby a genetic algorithmand the least squaresmethod

using the development data. The parameter values that are

related to the genetic algorithmwere as follows: the crossover

probabilitywas100%, themutationprobabilitywas5%, and the

population size was 30. Also, the number of fuzzy rules is 2.

Table 1 shows the selected sensor signals to estimate the

LOCA break size. The number of selected input data is five for

each break position. For hot-leg and cold-leg LOCAs, the

selected input data are pressure and temperature in contain-

ment, pressure and water level in pressurizer, and pressure in

a broken side S/G. Additionally, for SGTR, the selected input

data are temperature in containment, reactor pressure vessel

water level, water level, and pressure in a broken side S/G, and

temperature in an unbroken side S/G.

Table 2 lists the performance results achieved by the CFNN

model for hot-leg LOCAs, cold-leg LOCAs, and SGTRs. As listed

in Table 2, for the development data of the hot-leg LOCAs, the

RMS error andmaximum error were approximately 0.38% and

1.83%, respectively. For the development data of the cold-leg

LOCAs, the RMS error and maximum error are approxi-

mately 0.22% and 0.78%, respectively. For the development

data of SGTRs, the RMS error and maximum error are

approximately 0.77% and 3.29%, respectively.

As listed in Table 2, for the test data of the hot-leg LOCAs,

the RMS error and maximum error were approximately 0.51%

and 0.62%, respectively. For the test data of the cold-leg LOCAs,

the RMS error and maximum error are approximately 0.27%

and 0.57%, respectively. For the test data of SGTRs, the RMS

error andmaximum error are approximately 0.69% and 1.58%,

respectively. Table 3 lists the RMS andmaximum errors in the

test data for the CFNN and support vector regression (SVR)

model [20]. The SVRmodel nonlinearly maps the original data

into higher dimensional feature space and conducts linear

regression on the resulting feature space. The kernel used in

the SVR model uses the radial basis function. Three SVR

modelswere developed for the three different LOCA positions.

The kernel parameters of the SVRmodels were optimized by a

genetic algorithm like the proposed CFNN model. The CFNN

and SVR models used the same input data. The CFNN model

performs much better than the SVR model does.

Figs. 6e8 show the estimated break sizes for the develop-

ment and test data for the hot-leg LOCAs, cold-leg LOCAs, and

SGTRs, respectively. The estimation values are consistent

with the target values for hot-leg LOCAs, cold-leg LOCAs, and

SGTRs, respectively. The CFNN model is confirmed to accu-

rately estimate the LOCA break size. Fig. 9 shows the RMS

Table 2 e Performance of the cascaded fuzzy neural network model.

Break
position

No. of FNN
modules

Complexity Development data Test data

RMS error (%) Maximum error (%) RMS error (%) Maximum error (%)

Hot-leg 8 152 0.38 1.83 0.51 0.62

Cold-leg 8 152 0.22 0.78 0.27 0.57

SGT 5 80 0.77 3.29 0.69 1.58

FNN, fuzzy neural network; RMS, root-mean-square.

Table 3 e Comparison of the cascaded fuzzy neural
network (CFNN) and support vector regression (SVR)
models.

Break
position

CFNN SVR

RMS
error (%)

Maximum
error (%)

RMS
error (%)

Maximum
error (%)

Hot-leg 0.51 0.62 1.00 2.89

Cold-leg 0.27 0.57 0.67 1.91

SGT 0.69 1.58 0.64 1.45

RMS, root-mean-square; SGT, steam generator tube.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 si
ze

 (m
2 )

Break size (m2)

 Target 
 Estimation

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 si
ze

 (m
2 )

Break size (m2)

 Target
 Estimation

(A)

(B)

Fig. 9 e RMS error versus stage number. (A) Development

data. (B) Test data. CFNN, cascaded fuzzy neural network;

RMS, root-mean-square; SGTR, steam generator tube

ruptures.
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errors of the development and test data, respectively. The

RMS error gradually decreases as the number of stages in the

CFNN model increases.

The input data variables to the CFNN are the 60-second

time-integrated values of simulated sensor signals. There-

fore, most of the measured sensor noises except for biased

measurement errors will be removed. To consider the

biased measurement uncertainties in the measured signals

that are used as inputs to the CFNN, 1% and 2% over- or

under-measured input signals are assumed. Table 4 shows

the degradation of the performance of the CFNN models due

to the biased measurement uncertainties for the test data-

set. Even though the CFNN model underperforms due to the

biased measurement uncertainties, the RMS errors of the

CFNN model do not exceed about 7% if the biased mea-

surement uncertainties are maintained under 2%. Also, the

RMS and maximum errors increases linearly according to

the biased measurement uncertainties.

4. Conclusion

When accidents, such as LOCAs, occur in NPPs, it is important

for the plant's operators to know the state of the accident

quickly in order to manage it efficiently. The CFNN model

presented in this paper was designed to estimate the LOCA

break size using the short-time scale integrated values of five

simulated sensor signals after a reactor scram. The CFNN

model was developed and verified using independent devel-

opment and test data sets. The performance results of the

CFNN model show that the RMS error decreases as the stage

number of the CFNN model increases. In addition, the perfor-

mance results of the CFNN model produce an RMS error level

below0.7%.Therefore, it is confirmed that theCFNNmodel can

accurately predict the LOCA break size. If the operators can be

informed of the break size of the LOCA, it is expected that they

can respond quickly and properly to the LOCA circumstances

to prevent the meltdown of the reactor core.
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