• Title/Summary/Keyword: Loss of Steel Products

Search Result 36, Processing Time 0.024 seconds

High-Temperature Corrosion Behavior of 316 L Stainless Steel in Carbon Dioxide Environment (고온 이산화탄소 분위기에서 316 L 스테인리스강의 부식 거동)

  • Chae, Hobyung;Seo, Sukho;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.552-556
    • /
    • 2017
  • Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to $800^{\circ}C$ during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of $500-700^{\circ}C$ in the carbon dioxide environment, the corrosion resistance at $800^{\circ}C$ was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Magnetic Properties of Powdered Fe Cores Containing Stainless Steel-making Dusts (스테인레스 제강분진을 함유한 순철 압분코아의 자기특성)

  • Kim S. W.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • Effects of stainless steel-making dusts and binder content on compacting $density(\rho)$ and magnetic properties were evaluated. Cores compacted with the mixture of pure Fe powders, $5wt.\%$ dusts and $0.25wt.\%$ binder showed good AC magnetic properties. For example, permeability$({\mu}a)$ and core loss(P) of the cores containing $5wt.\%$ dusts at 500 kHz were 62 and $4008\;{\mu}W/cm^3$, respectively. These properties are almost equivalent to those of competitor's products (i.e, Ancorsteel TC 80 produced by $H\ddot{o}gan\ddot{a}s$ Corp.). The powdered cores obtained from the present work are expected to apply for high-performance soft magnetic components such as normal mode choke filter and pulse transformer.

Forging of Valve Fitting Products for Semi-Conductor Industry Using a Super-High Speed Shearing Process (초고속 전단공정을 이용한 반도체용 밸브 피팅 단조)

  • Park, Joon-Hong;Jeon, Eon-Chan;Kim, Tae-Ho;Kim, Hyung-Baek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • Cropping metal materials is widely used for feeding processes of various forming method, such as forging, extrusion, drawing, and upsetting. However, cropping has many weak points, which are material loss in part of cutting, chip creation, and much use of lubrication oil, etc. In this study, instead of cropping, a novel process is proposed to cut metal materials, especially stainless steel bar which is known very difficult to crop. Results of FE-analysis will be shown to verify the proposed method comparing with those of the conventional cropping process. Also, fitting products were successfully forged using the fabricated billet by the proposed process.

  • PDF

Corrosion Damage Behavior of STS 304 and STS 415 for Reactor Coolant Pump during Ultrasonic-Chemical Decontamination Process (원자로 냉각재 펌프용 STS 304와 STS 415의 초음파-화학제염 공정 시 부식 손상 거동)

  • Hyeon, Gwang-Ryong;Park, Jae-Cheol;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.218-223
    • /
    • 2018
  • In this study, we proposed a new ultrasonic-chemical decontamination process for decontaminating radioactive corrosion products during the maintenance of reactor coolant pump (RCP). The actual decontamination process was reproduced in the laboratory. And the corrosion characteristics of stainless steel (STS), constituting the RCP interior parts, were examined. The weight-loss measurment and polarization experiment were carried out in order to determine the corrosion characteristics of STS 304 and STS 415 by repeated decontamination processes. The STS 304 presented a little corrosion damage, which was almost indistinguishable from visual observation. The weight-loss rate of STS 304 was also significantly lower. On the other hand, STS 415 showed severe corrosion damage on its surface, greater weight-loss rate and higher corrosion current density than STS 304.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

Evaluation of the inhibitive characteristics of 1,4-dihydropyridine derivatives for the corrosion of mild steel in 1M $H_2SO_4$

  • Sounthari, P.;Kiruthika, A.;Sai santhoshi, J.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.65-78
    • /
    • 2013
  • The present investigation deals with the corrosion inhibition of mild steel in 1M $H_2SO_4$ with 1, 4-dihydro pyridine and its derivatives prepared using microwave activation method. The synthesis of inhibitor was confirmed by IR spectra. The effect of 1, 4-dihydropyridine derivatives on the corrosion inhibition of mild steel in 1M $H_2SO_4$ was studied using weight loss and electrochemical polarization techniques. Influence of temperature (303-333K) and synergistic effect of halide ions ($I^-$, $Br^-$ and $Cl^-$) on the inhibition behaviour was also studied. Corrosion products on the metal surface were analyzed by scanning electron microscopy (SEM) and a possible mechanism of inhibition by the compounds is suggested. Thermodynamic parameters were calculated using weight loss data in order to elaborate the mechanism of corrosion inhibition. Polarization measurements revealed that the studied compounds acted as mixed type inhibitor but slightly anodic in nature. Electrochemical impedance measurements revealed that the compounds were adsorbed onto the carbon steel surface and the adsorption obeyed the Langmuir adsorption isotherm. The synergistic effect of halide ions on the IE increases with increase in concentration. The IE obtained from atomic absorption spectrophotometric studies was found to be in good agreement with that obtained from the conventional weight loss method. SEM revealed the information of a smooth, dense protective layer in presence of the inhibitors.

Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water (일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동)

  • Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

Atmospheric Corrosion of Hot Dip Zinc Coated Steel in Coastal and Rural Areas of Vietnam

  • Tru, Nguyen Nhi;Duyen, Le Khac;Han, Tran Mai
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.241-246
    • /
    • 2017
  • The comparative results of corrosion testing in humid tropical atmosphere in rural and coastal areas for hot dipped zinc coatings are presented below. The test was conducted in outdoor conditions over a period of five years. The mass loss and other performance characteristics of two types of zinc coatings were evaluated, analysed and discussed in relation to the climatic and environmental parameters. The corrosion rates of the coatings exposed to coastal conditions were about three times higher than the corrosion rates appreciated in rural conditions. The data demonstrates that the corrosion process obeys an equation of the form $M=At^n$, where M is the loss of metal and t is the time of exposure. A and n are constants which values depend on the environmental characteristics and the physicochemical behavior of the corrosion products respectively. Corrosion is strongly influenced by atmospheric time of wetness (TOW) and airborne salinity. The nature and composition of corrosion products are also considered. Simonkolleite, a major crystalline phase, was found in the zinc corrosion products exposed to coastal conditions, while zinc hydroxide and zinc hydrosulfate are easily found in rural settings.