• Title/Summary/Keyword: Loss Tangent

Search Result 188, Processing Time 0.023 seconds

Design of Koch Curve Microstrip Patch Antenna for Miniaturization Structure (소형화 구조를 위한 koch curve 마이크로스트립 패치 안테나 설계)

  • Kim, Sun-Woong;Kim, Gul-Bum;Yun, Jung-Hyun;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2823-2830
    • /
    • 2014
  • The antenna miniaturization technique involves the increment of the electrical length of the resonator the variation of the physical appearance of the antenna. The most typical method of size reduction is designing helical antenna, meander antenna, and fractal antenna. Size reduction using fractal antenna is proposed in this paper. Fractal koch curve has been etched in microstrip patch antenna to downsize the antenna at ISM (Industrial Scientific and Medical) frequency band of 2.45 GHz koch curve microstrip patch antenna ha FR4 epoxy substrate with dielectric constant 4.7, loss tangent equal to 0.02 and dielectric high of 1.6 mm. The designed antenna is fabricated using etching process. The fabricated antenna has return loss of 2.45 GHz, VSWR of 1.1492, and impedance is matched to $46{\Omega}$.

On the local stability condition in the planar beam finite element

  • Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.507-526
    • /
    • 2001
  • In standard finite element algorithms, the local stability conditions are not accounted for in the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not adequately related to the onset of the global instability. The phenomenon typically arises with material-type localizations, such as shear bands and plastic hinges. This paper addresses the problem in the context of the planar, finite-strain, rate-independent, materially non-linear beam theory, although the proposed technology is in principle not limited to beam structures. A weak formulation of Reissner's finite-strain beam theory is first presented, where the pseudocurvature of the deformed axis is the only unknown function. We further derive the local stability conditions for the large deformation case, and suggest various possible combinations of the interpolation and numerical integration schemes that trigger the simultaneous loss of the local and global instabilities of a statically determined beam. For practical applications, we advice on a procedure that uses a special numerical integration rule, where interpolation nodes and integration points are equal in number, but not in locations, except for the point of the local instability, where the interpolation node and the integration point coalesce. Provided that the point of instability is an end-point of the beam-a condition often met in engineering practice-the procedure simplifies substantially; one of such algorithms uses the combination of the Lagrangian interpolation and Lobatto's integration. The present paper uses the Galerkin finite element discretization, but a conceptually similar technology could be extended to other discretization methods.

Microwave Dielectric Properties of $\textrm{BaCo}_{x}\textrm{Ti}_{x}\textrm{Fe}_{12-2x}\textrm{O}_{19}$($1.0\leq\textrm{x}\leq5.0$) Materials ($\textrm{BaCo}_{x}\textrm{Ti}_{x}\textrm{Fe}_{12-2x}\textrm{O}_{19}$($1.0\leq\textrm{x}\leq5.0$)재료의 Microwave 유전특성)

  • Kim, Chan-Uk;Jo, Nam-Ung
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.775-779
    • /
    • 1998
  • The resonant frequency fo and unloaded quality factor Qu of CoTi-substituted Barium ferrites($\textrm{BaCo}_{x}\textrm{Ti}_{x}\textrm{Fe}_{12-2x}\textrm{O}_{19}$, $1.0\leq\textrm{x}\leq5.0$) were measured at frequencies between 5 to 10GHz using the paralleled copper-plate wave guide method. The measurements showed that the permittivities of CoTi-substituted Barium ferrites(CoTi-BF) increased from 14.7 to 23.4 with the contents of CoTi, x, and the loss tangents had values of $\textrm{10}^{-3}$ order. From these results, CoTi-BF are considered to be very promising materials in microwave devices such as dielctric resonator antennas.

  • PDF

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Design and Analysis of UWB Circular Patch Antenna Using Microstrip Line (마이크로스트립 라인을 이용한 UWB 원형 패치 안테나 설계 및 분석)

  • Kim, Jin-Ju;Kim, Sun-Woong;Park, Jung-Jin;Jeong, Min-A;Park, Kyung Woo;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.938-943
    • /
    • 2015
  • The proposed circular patch antenna was designed to include relative bandwidth of above 25% as designed by the FCC in the FCC in the 3.1 ~ 10.6 GHz band. The antenna was induced to have a wide band characteristic through two structures of the usual microstrip line and a microstrip line with a linear change in impedance. The proposed finally antenna was designed using an FR4_epoxy substrate with 4.7% permittivity, 0.02 of loss tangent, and 1.6 mm of thickness, and was simulated with the use of HFSS made by Ansys. Return loss at frequency, VSWR, radiation pattern and the gain of the antenna were analysed. As a result, if satisfied a return loss of -10 dB and $VSWR{\leq}2$ from 2.28 ~ 13.35 GHz, showing about the bandwidth of 11.89 GHz, and the radiation pattern was unidirectional in all bands. The antenna gain gradually increased from 2 ~ 8 GHz and had the highest gain of 7.92 dBi at 8 GHz. and the gain gradually decreased in the 9 ~ 12 GHz band.

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

Analysis of Deterioration Characteristics by Filtering Processes at 6.6kV Power Cable Systems in Operation (운전 중인 6.6kV 전력 케이블 시스템의 필터링 과정에 의한 열화 특성 해석)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • With a development of modern industry, demand for electric power is rapidly increasing and the capacity of power transfer is required to become bigger and bigger. At power station, the high-voltage power cable is used as the only method in order to transfer electric power. In this paper, we have analyzed the deterioration characteristics of 6.6kV power cable systems in operation. For the time duration of 2000 days, we have measured the cable in operation in order to extract the data for the deterioration characteristics. By analyzing the data by means of several steps of filtering processes, we could obtain the linear relations of insulation resistances as a function of time. Furthermore, we can verify that the progress characteristics in deterioration process of 6.6kV power cable systems follows the process of heat deterioration.

Developing Equipment to Detect the Deterioration Status of 6.6kV Power Cables in Operation at Power Station (발전소에서 운전 중인 활성 6.6kV 전력 케이블의 고장상태를 파악하는 장치의 개발)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The technology to predict and prevent an accident of the cable system in power station is required. The techniques of inactivated diagnosis, partial discharge and $tan{\delta}$, have been adopted to diagnoze the operating characteristics of cables, but it is not so easy to find out problems in cables in an inactive state before the cable accident happens. In this paper, we did a research on the 6.6kV high-power cables, installed at Korean Western Power Station Co., Ltd. in order to diagonize the cables, playing a major role at the station. We have developed an equipment to measure an insulation resistance based on the temperature and current of the cable. By installing the system in a power station, we could find abnormal status for evaluation of the lifetime. In the short term, by analyzing the data, we apply the research result to the diagnosis and evaluation of the 6.6kV power cables. In the long run, however, we plan to reduce the cost of the installation and operation of cable systems at power stations.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.