태권도 겨루기의 전자호구, 축구의 VAR 등 스포츠에서 기술 발전이 고도화되고 있다. 하지만 태권도 품새는 사람이 직접 자세를 눈으로 보고 판단하며 지도하기 때문에 때로는 대회의 현장에서 판정시비가 일어난다. 본 연구는 인공지능을 이용하여 태권도 동작을 더 정확하게 판단하고 평가할 수 있는 인공지능 모델을 제안한다. 본 연구에서는 촬영 및 수집한 데이터를 전처리한 후 학습, 테스트, 검증 세트로 분리한다. 분리한 데이터를 각 모델과 조건을 적용하여 학습한 후 비교하여 가장 좋은 성능의 모델을 제시한다. 각 조건의 모델은 정확도, Precision, Recall, F1-Score, 학습 소요 시간, Top-n error의 값을 비교하였고 그 결과 ResNet50과 Adam을 사용한 조건에서 학습한 모델의 성능이 가장 우수한 것으로 나타났다. 본 연구에서 제시한 모델을 활용하여 교육 현장이나 대회 등 다양한 방면에서 활용할 수 있을 것으로 기대한다.
음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널잡음에 의한 왜곡이다. 일반적으로 배경잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 받게 한다. DSR (Distributed Speech Recognition) 기반의 음성인식 역시 이와 같은 문제로 성능 향상에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 다양한 잡음제거 알고리듬이 사용되고 있으나 낮은 SNR환경에서 부정확한 잡음추정으로 발생하는 스펙트럼 손상과 잔존 잡음은 음성인식기의 인식환경과 학습 환경의 불일치를 만들게 되어 인식률을 저하시키는 원인이 된다. 본 논문에서는 이와 같은 문제를 해결하기 위해 잡음제거 알고리듬으로 MMSE-STSA 방법을 사용하였고 손상된 스펙트럼을 보상하기 위해 Ideal Binary Mask를 이용하였다. 잡음환경 (SNR 15 ~ 0 dB)에 따른 실험결과 제안된 방법을 사용했을 때 향상된 스펙트럼을 얻을 수 있었고 향상된 인식성능을 확인했다.
최근에 Lee 등은 1차원 수평배열 센서만을 사용하여 다중경로를 통해 들어오는 신호로부터 표적의 3차원 위치를 추정하였다. 그러나 이 기법에서 음속은 수심에 상관없이 일정하다고 가정하였기 때문에 음속이 수심에 따라 다양하게 변화하는 실제 해양환경에서는 그 추정 성능이 현저하게 저하된다. 따라서 본 논문에서는 비균일 음속 환경에 적합한 근거리 표적의 3차원 위치추정 기법을 제안한다. 제안한 기법에서는 선형의 음속구조를 가지는 근거리 다중경로 환경에서 음파전달 모델을 기반으로 한 위치추정함수를 구성하였으며 이로부터 표적의 방위각, 거리 및 깊이를 3차원 탐색을 통하여 추정하였다. 선형 음속구조 및 실제 환경과 유사한 비선형 음속구조를 적용하여 제안한 기법의 성능을 기존의 기법과 비교, 분석하였으며 기존의 기법에 비해 거리 추정 오차는 최대 100m, 깊이 추정 오차는 50m정도 감소됨을 확인하였다.
본 연구는 소셜 감성(social sentimental)을 긍정 및 부정적 의견으로 구분하여 이들 의견이 개별 기업의 주식수익률에 미치는 영향이 비대칭적인지(asymmetric) 분석하였다. 이를 위하여 한국거래소에서 활발하게 거래되고 트위터 의견도 충분한 기아차, 아모레퍼시픽, 포스코, 한국전력 등 4개 기업을 분석대상으로 하였다. 주요 분석 결과는 다음과 같다. 첫째, 긍정적 의견은 개인투자자의 거래 비중이 상대적으로 낮은 아모레퍼시픽의 주식수익률에는 영향을 주지 못한 반면 나머지 3개 기업의 주식수익률에는 유의한 양(+)의 영향을 주었다. 둘째, 부정적 의견은 4기업의 주식수익률에 모두 유의하게 음(-)의 영향을 주는 것으로 나타났다. 특히 부정적 의견이 긍정적 의견보다 주식수익률에 미치는 영향이 더 크게 나타났으며, 이는 투자자들이 손실회피 성향 등으로 수익보다 손실에 더 민감하기 때문으로 보인다. 본 연구는 트위터의 긍정 또는 부정적 의견이 주식수익률에 비대칭적(asymmetric)으로 영향을 미치는 것을 발견하였으며, 이는 트위터의 의견을 투자자 심리(sentiment) 대용변수(proxy)로 활용할 수 있음을 보여준다.
The purpose of this study was to monitor changes in the quality of ginseng and predict its shelf-life. As the storage period of ginseng increased, some quality indicators, such as water-soluble pectin (WSP), CDTA-soluble pectin (CSP), cellulose, weight loss, and microbial growth increased, while others (Na2CO3-soluble pectin/NSP, hemicellulose, starch, and firmness) decreased. Principal component analysis (PCA) was performed using the quality attribute data and the principal component 1 (PC1) scores extracted from the PCA results were applied to the multivariate analysis. The reaction rate at different temperatures and the temperature dependence of the reaction rate were determined using kinetic and Arrhenius models, respectively. Among the kinetic models, zeroth-order models with cellulose and a PC1 score provided an adequate fit for reaction rate estimation. Hence, the prediction model was constructed by applying the cellulose and PC1 scores to the zeroth-order kinetic and Arrhenius models. The prediction model with PC1 score showed higher R2 values (0.877-0.919) than those of cellulose (0.797-0.863), indicating that multivariate analysis using PC1 score is more accurate for the shelf-life prediction of ginseng. The predicted shelf-life using the multivariate accelerated shelf-life test at 5, 20, and 35℃ was 40, 16, and 7 days, respectively.
Awosan Elizabeth Adetutu;Yakubu Fred Bayo;Adekunle Abiodun Emmanuel;Agbo-Adediran Adewale Opeyemi
Journal of Forest and Environmental Science
/
제40권1호
/
pp.1-8
/
2024
Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper understanding, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower prior intervention to help moderate against decrease in yield and/or total crop loss.
Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
한국컴퓨터정보학회논문지
/
제29권8호
/
pp.23-32
/
2024
NVS는 여러 각도와 위치에서 수집한 이미지를 이용해 3차원 공간을 재현하는 연구 분야로, 증강현실, 가상현실, 자율주행, 로봇 네비게이션 등에서 중요성이 커지고 있다. 최근 주목받는 3D-GS 방법론은 기존 NeRF 보다 고품질 장면 생성, 빠른 학습 시간, 실시간 렌더링이 가능하지만, Gaussian points의 밀도 조정 과정에서 전체 Gaussian points 수의 증가로 메모리 소모량 상승과 렌더링 속도가 저하되는 문제가 있다. 이를 개선하기 위해 본 논문에서는 불필요한 Gaussian points를 제거하여 메모리 효율성을 높이는 Gaussian blending 기법과 Gaussian points 감소로 인한 표현력 손실을 최소화하는 깊이 정보 반영 손실 함수를 제안하여 모델의 성능을 보완한다. 실험 결과, Tanks & Temples 벤치마크 데이터셋에서 성능을 유지하면서 Gaussian points 수를 최대 4% 감소시키는 효과를 확인하였다. 따라서 본 논문에서 제안한 방법론은 3D-GS 모델의 경량화 가능성을 실험적으로 증명하였다.
해당 논문의 목적은 deep neural network(DNN) 알고리즘을 이용하여 불포화토 지반의 압축파 속도와 간극률 간의 관계를 도출하는 것이다. 입력 인자는 error norm 방법으로 각각의 값이 간극률에 미치는 영향을 조사하였으며, 결론적으로 압축파 속도가 간극률 산정에 제일 큰 영향을 주는 것으로 나타났다. 압축파 속도와 간극률은 현장 및 실내 실험을 통해 도출하였으며, 총 266개의 수치 데이터를 이용하였다. DNN 적용 결과는 매 횟수마다 계산된 MSE 손실로 표현하였으며, 초반의 계산 횟수 단계에서 거의 0에 수렴하는 결과를 도출하였다. 예측된 간극률은 train과 validation으로 구분하여 분석하였으며, 실제 데이터와 비교하였을 경우 결정계수는 각각 0.97과 0.98로 나타나 높은 신뢰성을 보여준다. 해당 연구에서는 error norm 분석을 통해 민감도가 작은 인자는 배제하고 영향성이 높은 인자를 통해 종속 변수를 예측하는 방법론을 제시하였다.
SWAT(Soil and Water Assessment Tool) 모형 내 MUSLE(Modified Universal Soil Loss Equation) 유출인자의 계수 및 지수는 각각 11.8과 0.56으로 토지이용별 토양유실 산정에 동일하게 적용되는 문제점이 있다.이는 결과적으로 토양유실량을 과대 또는 과소 평가할 수 있으며, 결과적으로 우심지역 선별과 저감 대책에 따른 효율 평가에 문제를 발생시킬 수 있다. 그러나 아직까지 토지이용별 MUSLE 유출인자에 대한 계수 및 지수 산정과 이에 대한 SWAT 모형 내 적용성 평가가 이루어진 바 없다. 따라서 국내 유역을 대상으로 토양유실 발생 및 거동을 정확하게 예측하기 위해서는 토지이용별 유출인자의 계수 및 지수 산정과 이에 대한 SWAT 모형 내 적용성 평가가 필요하다. 이에 본 연구에서는 가아천 유역을 대상으로 토지이용별 유출인자의 계수 및 지수를 산정하고, SWAT 모형 내 적용에 따른 토양유실 및 유사유출 발생량 차이를 비교 분석하였다. 본 연구에서 산정된 토지이용별 유출인자의 계수 및 지수는 국내 고랭지 유역에서의 토양유실 발생 특성을 잘 반영하고 있는 것으로 분석되었다. 또한 토지이용별 유출인자의 계수 및 지수 적용에 따라 유역에서의 토양유실 및 유사유출 발생량 값은 큰 차이를 보이는 것으로 분석되었다. 따라서 국내 유역을 대상으로 기존에 미국에서 개발된 MUSLE를 적용하기 위해서는 토지이용별 유출인자의 계수 및 지수에 대한 충분한 수정·보완 과정이 중요시되어야 할 것으로 판단된다. 향후 본 연구의 결과는 비점오염원관리지역 내 토양유실 우심지역 선별과 토양유실 저감 대책 수립 및 평가를 위한 기초자료로 활용될 수 있으리라 판단된다.
본 시험은 속성건조에 의한 가을연맥의 건초 조제 가능성을 알아보고자 조생계통인 Swan을 공시하여 8월 24일 파종한 다음, 건초 조제시기(수잉후기, 출수기, 개화기)와 건조방법(건조제, Conditioning, 건조제 + Conditioning 및 대조구)을 달리하여 1996년 가을 축산기술연구소에서 수행되었다. 화학제인 건조제는 $K_2CO_3$ 2%를 수확 직전 기계 분무하였으며, 물리적인 Conditioning은 모델 GMR 2800 Mower Conditioner(trail type)를 사용하였고, 포장건조 후 각형 곤포를 조제하였으며, 건초의 건물손실과 외관평가는 2개월간 보관저장 후 조사하였다. 수잉후기, 출수기, 개화기로 수확이 늦어질수록 연맥의 건물수량은 증가하고 건물률은 높아진 반면 사료가치는 크게 낮아졌다. 건조속도는 건초 조제시기에 관계없이 5일간의 포장건조에도 불구하고 수분 함량이 높아 건초 조제 적기에 도달하지 못하였으며, 특히 개화기에서는 수분감소가 거의 없었다. 건조방법별 건조효과는 전반적으로 건조효과가 낮았으나 Conditioning구에서 대조구에 비해 2일정도 포장 건조기간을 단축시킬 수 있었으며 건조제 처리효과는 없었다. 건초의 건물손실은 수잉 후기에서 51.4%로 매우 높았으며, 출수기도 21.1%로 높았고, 건조방법별로는 Conditioning구와 건조제 + Conditioning 처리구에서 손실이 적은 경향이었다. 건초의 외관평가에서 수잉 후기로 조제시기가 빠를 때에는 수분 함량이 너무 높아 품질은 크게 불량하였으며, 출수기의 Conditioning구와 건조제 + Conditioning 처리구에서 80점으로 양호할 뿐 전반적으로 가을연맥 건초의 외관평점은 매우 낮았다. 이상의 결과로서 포장에서의 건조기간 단축과 건초의 품질향상을 위한 건조제 처리효과는 인정되지 않았으며 Conditioner 사용이 추천되었으나, 우리 나라에서 가을연맥의 건초 조제는 실용화하기 매우 어려운 것으로 판단되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.