• Title/Summary/Keyword: Loop design

Search Result 2,490, Processing Time 0.027 seconds

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

Dynamic Modeling and Characteristics Analysis of Solid Rocket Motor with Multi Axis Pintle Nozzles (다축 핀틀 노즐을 장착한 고체 추진기관의 동적 모델링 및 특성 분석)

  • Ki, Taeseok;Hong, Seokhyun;Park, Ik-soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.20-28
    • /
    • 2015
  • Performance parameters of solid rocket motor with multi axis pintle nozzles were analyzed theoretically and modeled. For figuring out the governed variable of dynamic characteristics of system, dynamic analysis was done by using established model. To present characteristics of this system, the model should include not only internal ballistics of propulsion unit but also actuating system to move pintle. For solid rocket motor with multi axis pintle nozzles, not only performance of steady state but also dynamic characteristic of transient state is important design parameter to precise thrust control. Therefore, response time of open-loop system was analyzed by using established model and requirement about response time was satisfied by controlling pressure.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator

  • Abdelhameed, Ahmed Amin E.;Chaudri, Khurrum Saleem;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2699-2708
    • /
    • 2020
  • Helical-coil steam generator (HCSG) technology is a major design candidate for small modular reactors due to its compactness and capability to produce superheated steam with high generation efficiency. In this paper, we investigate the feasibility of the passively autonomous power maneuvering by coupling the 3-D transient multi-physics of a soluble-boron-free (SBF) core with a time-dependent HCSG model. The predictor corrector quasi-static method was used to reduce the cost of the transient 3-D neutronic solution. In the numerical system simulations, the feedwater flow rate to the secondary of the HCSGs is adjusted to extract the demanded power from the primary loop. This varies the coolant temperature at the inlet of the SBF core, which governs the passively autonomous power maneuvering due to the strongly negative coolant reactivity feedback. Here, we simulate a 100-50-100 load-follow operation with a 5%/minute power ramping speed to investigate the feasibility of the passively autonomous load-follow in a 450 MWth SBF PWR. In addition, the passively autonomous frequency control operation is investigated. The various system models are coupled, and they are solved by an in-house Fortran-95 code. The results of this work demonstrate constant steam temperature in the secondary side and limited variation of the primary coolant temperature. Meanwhile, the variations of the core axial shape index and the core power peaking are sufficiently small.

The Engagement HILS Technology Research in the Laboratory for Simulated Warfare between Electronic Warfare Equipment and High-speed Maneuvering Weapon System (실험실에서 전자전 장비와 고속 기동 무기체계 간 실 교전 모의용 조우 HILS 기술 연구)

  • Shin, Dongcho;Choe, Wonseok;Kim, Soyeon;Lee, Chiho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this paper, we describe the implementation methods and algorithms for the various technologies and devices required for the construction of the engagement HILS(Hardware In the Loop Simulation) in the limited space to simulate the high-speed maneuvering encounter situation of the weapon system in 3-dimensional real world space. Through this research, we have been able to suggest ways to analyze the major design elements of future electronic warfare equipment through experiments simulating actual engagements between various high-speed maneuvering weapons systems and electronic warfare devices in the future battlefield. It was confirmed that the M&S technology could be used to eliminate technical risks, reduce development cost, and shorten development time in the future real system development. The results of this study can be a great assist not only for the field of electronic warfare system research and development, but also for the research & implementation on HILS of various engaging class weapons systems.

Design and testing of 25kW bipolar pulse power supply for mineral exploration of Mt.Taebaek (광물 탐사용 25kW급 양극성 펄스전원장치 설계 및 태백산 탐사시험)

  • Bae, Jung-Soo;Kim, Shin;Kim, Tae-Hyun;Yu, Chan-Hun;Kim, Hyoung-Suk;Kim, Jong-Soo;Jang, Sung-Roc
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.257-259
    • /
    • 2019
  • 본 논문은 광물 탐사를 위한 25kW급 양극성 펄스전원장치에 대해 기술한다. 소프트스위칭 기반의 고효율 LCC 공진형 컨버터와 풀 브리지 기반 양극성 펄스 스위칭부로 구성된 단위 모듈(500V, 12.5A)을 기반으로 설계한다. LCC 공진형 컨버터는 전류의 rms값을 줄이기 위해 공진 전류모양을 사다리꼴 형태로 설계하여 도전 손실측면에서 크게 개선되었고, 높은 전력밀도를 달성하기 위해 변압기의 누설 인덕턴스를 공진 파라메터로 활용한다. 추가적으로, 짧은 펄스폭을 가지도록 설계된 게이트 구동 회로는 출력을 DC에서 8kHz의 넓은 주파수 범위에서 동작시킬 뿐만 아니라 게이트 신호를 전달하기 위한 변압기의 사이즈를 줄이기 위해 제안된다. 단위모듈 형태로 개발된 양극성 펄스전원장치는 4개의 모듈이 직병렬로 결선되어 부하조건에 따라 Grounded dipole mode (2kV, 12.5A) 또는 Loop mode (500V, 50A)로 동작한다. 4모듈 직병렬 운전 시 발생하는 모듈 간 전압 불균형 문제를 해결하기 위해 메인 변압기에 보상권선이 감긴다. 본 논문에서는 개발된 양극성 펄스전원 장치의 설계를 저항부하 실험 및 태백산 탐사시험 결과를 바탕으로 검증한다.

  • PDF

Verification and validation of STREAM/RAST-K for PWR analysis

  • Choe, Jiwon;Choi, Sooyoung;Zhang, Peng;Park, Jinsu;Kim, Wonkyeong;Shin, Ho Cheol;Lee, Hwan Soo;Jung, Ji-Eun;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.356-368
    • /
    • 2019
  • This paper presents the verification and validation (V&V) of the STREAM/RAST-K 2.0 code system for a pressurized water reactor (PWR) analysis. A lattice physics code STREAM and a nodal diffusion code RAST-K 2.0 have been developed by a computational reactor physics and experiment laboratory (CORE) of Ulsan National Institute of Science and Technology (UNIST) for an accurate two-step PWR analysis. The calculation modules of each code were already verified against various benchmark problems, whereas this paper focuses on the V&V of linked code system. Three PWR type reactor cores, OPR-1000, three-loop Westinghouse reactor core, and APR-1400, are selected as V&V target plants. This code system, for verification, is compared against the conventional code systems used for the calculations in nuclear design reports (NDRs) and validated against measured plant data. Compared parameters are as follows: critical boron concentration (CBC), axial shape index (ASI), assembly-wise power distribution, burnup distribution and peaking factors. STREAM/RAST-K 2.0 shows the RMS error of critical boron concentration within 20 ppm, and the RMS error of assembly power within 1.34% for all the cycles of all reactors.

A Study on the Healing Environment with Architectural Spatial Composition in Healthcare Facilities - Focused on the Space Analysis of Sou Fujimoto's Healthcare Projects (의료시설 내 건축공간구성을 통한 치유환경 조성에 관한 연구 - 소우 후지모토 의료시설 사례들의 공간분석을 중심으로)

  • Jeong, Taejong
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.2
    • /
    • pp.17-25
    • /
    • 2019
  • Purpose: The analysis of spatial composition is required for the creation of healing environment in healthcare facilities. This study has been accomplished to provide basic data for the planning and design of hospital architecture. Methods: Literature review of healing environment and investigation on characteristics of spatial composition in healthcare facilities have been conducted. The architectural plans of four Sou Fujimoto's healthcare projects have been analyzed with space syntax. Results: The result of this research can be summarized as followed. First of all, the healing environments are consisted with architectural composition in addition to physical and psychological factors for healing environment. The second one is that the characteristics of spatial composition in Sou Fujimoto's healthcare projects are different private/public/corridor relationships in program configuration, loop or one direction circulation, combined or independent corridor with program, and radical or linear connection in spatial connection methods. The third one is that the characteristics of spatial composition in selected cases through space syntax are high variation on integration, low variation on connectivity, and high distribution in main circulation on ERAM(3). Implications: In addition to the specific spatial composition in healthcare facilities of the architect's project, it is necessary to analyze the relationship with other factors and facilities to develop the planning of hospital architecture.

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

Analysis of the Extension and Contraction of Warp-knitted Fabrics Based on Experimental Conditions (실험 조건에 따른 경편성물의 신장률과 축소율 분석)

  • Lee, OkKyung;Hong, Kyunghi;Lee, Gyeongmi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.3
    • /
    • pp.453-463
    • /
    • 2021
  • The lengthwise and widthwise deformation of warp-knitted fabrics with different sizes and loading modes were evaluated. Moreover, five tricot samples cut in three directions were compared under four test conditions (A-D). In tests A and B, 500 and 250 g loads were applied on a layer of 20 × 20 and 5 × 10 cm2 samples, respectively. In test C, a 20 × 20 cm2 sample was folded in half over a rod, and 500 g load was applied to each half. In test D, a 20 × 20 cm2 sample was sewn in a loop and subjected to a 500 g load. The lengthwise extension and widthwise contraction analysis results indicate that test B affords the largest values. However, analysis results of the warp-knitted fabric normalized through conversion to a 1 g load and 1 cm sample width indicate that the largest values are afforded for test D. Therefore, pattern reduction may vary depending on the measurement method and properties of the knitted fabric used for the compression wear production, causing variations in the finished product. Thus, an appropriate measurement method must be adopted based on the compression wear design and knitted fabric to be used.