• Title/Summary/Keyword: Loop Bandwidth

Search Result 320, Processing Time 0.023 seconds

The Experimental Verification of Adaptive Equalizers with Phase Estimator in the East Sea (동해 연근해에서 위상 추정기를 갖는 적응형 등화기의 실험적 성능 검증)

  • Kim, Hyeon-Su;Choi, Dong-Hyun;Seo, Jong-Pil;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2010
  • Phase coherent modulation techniques in underwater acoustic channel can improve bandwidth efficiency and data reliability, but they are made difficult by time-varying intersymbol interference. This paper proposes an adaptive equalizer combined with phase estimator which compensates distortions caused by time-varying multipath and phase variation. The experiment in the East sea demonstrates phase coherent signals are distorted by time-varying multipath propagation and the proposed scheme equalizes them. Bit error rate of BPSK and QPSK are 0.0078 and 0.0376 at 300 meter horizontal distance and 0.0146 and 0.0293 at 1000 meter respectively.

A study on characteristics of High Efficiency and Wideband Microstrip Band Pass Filter for Wireless Data Communication (무선데이터 통신을 위한 고효율 광대역 마이크로스트립 대역통과 필터 특성에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae;Park, Won-Woo;Lee, Sang-Jae
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.225-233
    • /
    • 2008
  • This paper presents a compact, low insertion loss, sharp rejection and wide band microstrip band pass filter that is composed rectangular loop resonator and step-impedance-open-stub(SIOS) for wireless data communication. The SIOS can be reduce length about 30% more than general 0.25${\lambda}$ stub. And stubs can have the advantage of tuning impedance magnitude. In order to demonstrate agrement of this paper prove, the optimized wide band pass filters are realized and experimented. A transmission line model used to calculate the frequency response of the new filters shows good agreement with measurements. The filter with perturbation stubs has four poles at rejection band, the poles are excited 3.610GHz, 4.265GHz at low frequency band, 8.494GHz, 9.056GHz at high frequency band. And the filter has 3dB fractional bandwidth of 57%(3.695GHz), an insertion loss of better than 0.37dB from 4.549GHz to 8.244GHz, and two rejection of greater than 30dB within 237MHz(4.312GHz${\sim}$ 4.549GHz) at low frequency band, 234MHz(8.244GHz-8.491GHz) at high frequency band.

  • PDF

Design of the Wideband Notched Compact UWB Antenna (넓은 대역폭이 소거된 소형 UWB 안테나 설계)

  • Kim, Cheol-Bok;Lim, Jung-Sup;Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, a novel wideband notched compact UWB antenna is designed to satisfy the licensed UWB frequency bandwidth($3.1{\sim}4.8$ GHz, $7.1{\sim}10.2$ GHz) by symmetrically arranging two adjacent sectorial loop antennas. The wideband($4.8{\sim}7.1$ GHz) notch can be obtained by inserting the inverted-L shaped slits on the patch. The designed UWB antenna has return loss lower than -10dB at 3.1 GHz and over, group delay value lower than 1 ns and the linear phase property. The optimized UWB antenna inserted the inverted-L shaped slits has return loss great than -10dB, 5 ns of group delay, nonlinear phase and decreased gain properties over the frequency band, 4.8 GHz to 7.1 GHz.

Phase Noise Analysis in the OFDM Communication System (OFDM 통신시스템에서 위상 잡음분석)

  • 이영선;유흥균;정영호;함영권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1043-1050
    • /
    • 2004
  • In this paper, Phase noise is analyzed and a novel approach of the nonlinear approximation including second order term of phase noise is presented to analyze and quantize system performance. As results, in QPSK-OFDM system, when PLL loop bandwidth is 5.0 Hz, 1.0 kHB, 0.5 kHz respectively, there are about 0.6 dB, 1.0 dB, 1.7 dB SNR penalties at BER=10$\^$-4/ compared with system without phase noise in AWGN channel. In 16QAM modulation, there are about 1.9 dB, 3.2 dB, 6.7 dB SNR penalties at BER=10$\^$-4/ respectively. At QPSK-OFDM system, comparing the previous linear approximation method with our proposed nonlinear approximation method, there is similar BER performance at phase noise variance lower than 0.02, but certain difference occurs as variance increases more than 0.02. Furthermore, analytical BER results closely match with simulation results in the OFDM system employing QPSK and 16qAM modulation. And, BER performance of QPSK-OFDM system is considerably degraded because of the BER error floor if the phase noise variance becomes larger than 0.03.

Characteristics for High Efficiency and Wideband Band Pass Filter Using Rectangular Resonator and Step-Impedance-Open-Stubs (구형 공진기와 계단 임피던스 개방 스터브를 사용한 고효율 광대역 대역 통과 필터 특성)

  • Lee, Young-Hun;Kwon, Won-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • This paper presents a compact, low insertion loss, sharp rejection and wide band microstrip band pass filter that is composed rectangular loop resonator and Step-Impedance-Open-Stub(SIOS). The SIOS can be reduce length about 30 % more than general 0.25 $\lambda$ open stub. And the stub can the advantage of tuning impedance magnitude. In order to demonstrate agrement of this paper prove, the optimized wide band pass filters are realized and experimented. A transmission line model used to calculate the frequency response of the new filters shows good agreement with measurements. The filter has 3 dB fractional bandwidth of 51.75 %(3.206 GHz), an insertion loss of better than 0.44 dB from 4.587 GHz to 7.793 GHz, and two rejection of greater than 30 dB within 221 MHz($4.326{\sim}4.587\;GHz$) at low frequency band, 181 MHz($7.739{\sim}7.954\;GHz$) at high frequency band. Maximum rejection characteristics of the filter are -61.8 dB at low frequency and -76.3 dB at high frequency.

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Development of the Traffic Signal Control Strategy and Signal Controller for Tram (트램 운영을 위한 신호제어 전략 및 신호제어기의 개발)

  • Lee, In-Kyu;Kim, Youngchan;Lee, Joo Il;Oh, Seung Hwoon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.70-80
    • /
    • 2015
  • In recent years, tram has been the focus of a new mode of public transportation that can solve traffic jams and decrease public transit usage and environmental problem. This research is in the works to develop a tram signal controller and signal control strategies, and aim to resolve the problem of what could happen if a tram system was installed in general road. We developed the hierarchical signal control strategies to obtain a minimum tram bandwidth and to minimize vehicle delay, in order to perform a priority control to include passive and active signal priority control strategies. The strategies was produced for S/W and H/W, it is based in standard traffic signal controller. We conducted a micro simulation test to evaluate the hierarchical signal control strategies, which showed that the developed optimization model is effective to prevent a tram's stop in intersection, to reduce a tram's travel time and vehicle's delay.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.