• Title/Summary/Keyword: Longitudinal Strain

Search Result 410, Processing Time 0.029 seconds

Experiment and Strength Analysis of High-Strength RC Columns (고강도 철근 콘크리트 기둥의 실험 및 강도해석)

  • Son, Hyeok-Soo;Kim, Jun-Beom;Lee, Jae-Hoon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.149-160
    • /
    • 1999
  • This paper is a part of a research aimed at the verification of basic design rules of high-strength concrete columns. A total of 32 column specimens were tested to investigate structural behavior and strength of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength. steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356 kg/$cm^2$ to 951 kg/$cm^2$ and the longitudinal steel ratios were between 1.13 % and 5.51 %. Test results of column sectional strength are compared with the results of analyses by ACI rectangular stress block, trapezoidal stress block, and modified rectangular stress block. Axial force-moment-curvature analysis is also performed for predicting axial load-moment strength and compared with the test results. The ACI rectangular stress block provides over-estimated column strengths for the lightly reinforced high strength column specimens. The calculated strengths by moment-curvature analyses are highly affected by $k_3$ values of the concrete stress-strain curve. Observed failure mode. concrete ultimate strain, and stress block parameters are discussed.

Estimation of Applicability of Empirical Design Procedure for Predicting Seismic Response of Buried Gas Pipelines through 3D Time-history Analysis (3차원 시간이력해석을 통한 매설가스배관 종방향 지진응답 예측을 위한 경험적 설계법의 적용성 평가)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.53-68
    • /
    • 2015
  • Longitudinal strain is an important component of seismic design for buried pipelines. A design procedure which determines the wavelength from site natural period and shear wave velocity of the soil layer and closed-form solutions of pipelines under a harmonic motion is typically used in design. However, the applicability of the procedure has not yet been thoroughly investigated. In this paper, displacement-time histories extracted from 1D site response analyses are used in 3D shell-spring model to accurately predict the response of pipelines. The results are closely compared to those from the design procedure. The area of interest is East Siberia. Performing a site response analysis to determine site specific displacement time history is highlighted. The site natural period may be used to predict the predominant period of the acceleration time history, but cannot be used to estimate the predominant period of the displacement time history. If an accurate estimate of the predominant period of the displacement time history is provided, it is demonstrated that the design equation can be successfully used to predict the response of pipelines.

The Effects of Radiofrequency Catheter Ablation for Atrial Fibrillation on Right Ventricular Function

  • Minkwan Kim;Jae-Sun Uhm;Je-Wook Park;SungA Bae;In Hyun Jung;Seok-Jae Heo;Daehoon Kim;Hee Tae Yu;Tae-Hoon Kim;Boyoung Joung;Moon-Hyoung Lee
    • Korean Circulation Journal
    • /
    • v.54 no.4
    • /
    • pp.203-217
    • /
    • 2024
  • Background and Objective: The effects of radiofrequency catheter ablation (RFCA) for atrial fibrillation (AF) on right ventricular (RV) function are not well known. Methods: Patients who underwent RFCA for AF and underwent pre- and post-procedural echocardiography were enrolled consecutively. Fractional area change (FAC), RV free-wall longitudinal strain (RVFWSL), and RV 4-chamber strain including the ventricular septum (RV4CSL) were measured. Changes in FAC, RVFWSL, and RV4CSL before and after RFCA were compared among paroxysmal AF (PAF), persistent AF (PeAF), and long-standing persistent AF (LSPeAF) groups. Results: A total of 164 participants (74 PAF, 47 PeAF, and 43 LSPeAF; age, 60.8 ± 9.8 years; men, 74.4%) was enrolled. The patients with PeAF and LSPeAF had worse RV4CSL (p<0.001) and RVFWSL (p<0.001) than those with PAF and reference values. Improvements in RVFWSL and RV4CSL after RFCA were significant in the PeAF group compared with the PAF and LSPeAF groups (ΔRV4CSL, 8.4% [5.1, 11.6] in PeAF vs. 1.0% [-1.0, 4.1] in PAF, 1.9% [-0.2, 4.4] in LSPeAF, p<0.001; ΔRVFWSL, 9.0% [6.9, 11.5] in PeAF vs. 0.9% [-1.4, 4.9] in PAF, 1.0% [-1.0, 3.6] in LSPeAF, p<0.001). In patients without recurrence, improvements in RVFWSL and RV4CSL after RFCA were significant in the PeAF group compared to the LSPeAF group. Conclusions: RV systolic function is more impaired in patients with PeAF and LSPeAF than in those with PAF. RV systolic function is more improved after RFCA in patients with PeAF than in those with PAF or LSPeAF.

Prognostic Impact of Left Atrial Strain After Mitral Valve Repair Surgery in Patients With Severe Mitral Regurgitation

  • Jin Kyung Oh;Yong-Hoon Yoon;Jae-Hyung Roh;Minsu Kim;Byung Joo Sun;Sung-Ho Jung;Jae Hwan Lee;Jae Won Lee;Dae-Hee Kim;Jae-Hyeong Park
    • Korean Circulation Journal
    • /
    • v.52 no.3
    • /
    • pp.205-217
    • /
    • 2022
  • Background and Objectives: The prognostic value of left atrial (LA) function in terms of long-term clinical outcomes after mitral regurgitation (MR) surgery remains unclear. Therefore, we investigated the impact of preoperative LA global longitudinal strain (LAGLS) on the long-term postoperative clinical outcomes in chronic severe MR patients who underwent mitral valve (MV) repair surgery. Methods: From January 2012 to December 2017, we analyzed 338 patients (mean age, 51.9±12.5 years; 218 males [64.5%]) treated with MV repair surgery for severe MR. The primary outcome was cardiovascular events, defined as the composite of all-cause death, newly developed atrial fibrillation (AF), and re-hospitalization for cardiovascular causes. Results: During a median follow-up of 45 months (interquartile range, 26-65), 30 (8.9%) cardiovascular events, 5 (1.5%) all-cause death, 8 (2.4%) newly developed AF, and 26 (7.7%) re-hospitalizations occurred. On multivariable analysis, baseline LAGLS was an independent predictor of cardiovascular events (adjusted hazard ratio [HR], 0.91; 95% confidential interval [CI], 0.85-0.97; p=0.004) and re-hospitalization (adjusted HR, 0.93; 95% CI, 0.86-1.00; p=0.037). According to the optimal cutoff value of LAGLS, patients with low LAGLS (<23.6%) had a significantly higher risk of cardiovascular events (adjusted HR, 2.70; 95% CI, 1.04-7.00; p=0.041) than those with high LAGLS (≥23.6%). In a subgroup analysis, patients with high LAGLS had better clinical outcomes regardless of whether the patient had a LA volume index <60 mL/m2. Conclusions: In patients with chronic severe MR who received successful MV repair surgery, preoperative LAGLS is an independent predictor of long-term postoperative outcomes.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.

Finite Element Modeling and Nonlinear Analysis of Lumbosacrum Including Partial Ilium and Iliolumbar Ligaments (부분 장골과 장요추 인대를 포함한 요추 천추골의 유한 요소 모델링 및 비선형 해석)

  • Ha, S.K.;Lim, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2007
  • Owing to needs of biomechanical comprehension and analysis to obtain various medical treatment designs which are related with the spine in order to cure and diagnose LBP patients, the FE modeling and nonlinear analysis of lumbosacrum including a partial ilium and iliolumbar ligaments, were carried out. First, we investigated whether the geometrical configuration of vertebrae displayed by DICOM slice files is regular and normal condition. After constructing spinal vertebrae including a partial ilium, a sacrum and five lumbars (from L1 to L5)with anatomical shape reconstructed using softwares such as image modeler and CAD modeler, we added iliolumbar ligaments, lumbar ligaments, discs and facet joints, etc.. And also, we assigned material property and discretized the model using proper finite element types, thus it was completely modeled through the above procedure. For the verification of each segment, average sagittal ROM, average coronal ROM and average transversal ROM under various loading conditions(${\pm}10Nm$), average vertical displacement under compression(400N), ALL(Anterior Longitudinal Ligament) and PLL(Posterior Longitudinal Ligament) force at L12 level, strains of seven ligaments on sagittal plane at L45 level and maximal strain of disc fibers according to various loading conditions at L45 level, etc., they were compared with experimental results. For the verification of multilevel-lumbosacrum spine including partial ilium and iliolumbar ligaments, the cases with and without iliolumbar ligaments were compared with ROM of experiment. The results were obtained from analysis of the verified FE model as follows: I) Iliolumbar ligaments played a stabilizing role as mainly posterior iliolumbar ligaments under flexion and as both posterior and anterior iliolumbar ligaments of one side under lateral bending. 2) The iliolumbar ligaments decreased total ROM of 1-8% in total model according to various motion conditions, which changed facet contact forces of L5S level by approximately 0.8-1.4 times and disc forces of L5S level by approximately 0.8-1.5 times more than casewithout ilioligaments, under various loading conditions. 3) The force of lower discs such as L45 and L5S was bigger than upper discs under flexion, left and right bending and left and right twisting, except extension. 4) It was predicted that strains of posterior ligaments among iliolumbar ligaments would produce the maximum 16% under flexion and the maximum 10% under twisting. 5) It's expected that this present model applies to the development and design of artificial disc, since it was comparatively in agreement with the experimental datum.

Evaluation of Construction Loads of Slabs and Shores with Removing Shores and Placing Reshores (동바리 되세우기를 실시한 다층 건축구조물 바닥판의 시공하중 평가)

  • Chun, Sung-Chul;Tak, So-Young;Lee, Sung-Ho;Sho, Kwang-Ho;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.385-392
    • /
    • 2014
  • Reshoring makes slab deflect and support its own weight. The construction loads on the slabs in lower levels decrease using the reshoring. Simplified analysis proposed by ACI 347.2R-05 showed that if the reshoring is applied, construction loads on slabs and shores, and quantities of forms and shores decreased by 40%, 23%, 40%, and 50%, respectively. Shores' loads were comparatively measured on site. The measured reshore load was half of the load before removing the shores and was also lower than the measured shore load by 35%. To verify the safety of the reshoring, deflections of beams and strains of beam longitudinal bars were also measured. The maximum deflection was only L/5000 and the maximum bar strain was only 3.6% of the yield strain. Consequently, reshoring neither cause problems on the safety nor serviceability. In addition, the beam load was expected from the measured shores' loads and it coincides well with the predicted value by the simplified analysis of ACI 347.2R-05.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.