• 제목/요약/키워드: Longitudinal Strain

검색결과 399건 처리시간 0.026초

지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구 (An Experimental Study on the Concrete Filled Circular Steel Columns with D/t)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구 (A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads)

  • 박석순;김낙석
    • 한국재난정보학회 논문집
    • /
    • 제7권3호
    • /
    • pp.206-219
    • /
    • 2011
  • 포장 설계기준에서 중요한 요인은 응력과 변형률 분포도이다. 합리적인 응력과 변형률 분포도를 달성하기 위한 차량타이어의 접촉면적과 공기압은 매우중요하다. 본 연구에서는 이동하중 하에서 연성포장의 점탄성 특성에 관한 내용을 다루고 있으며 현장 측정시험을 통하여 실제 도로의 종횡변형률을 수치해석 결과와 비교분석 하였다. 포장거동에 대한 차량이동하중의 영향을 적절히 모사하기 위하여 단계하중을 이용한 3차원 유한요소 해석이 수행되었다. 점탄성 해석을 위하여 아스팔트 혼합물의 이완계수, E(t), 가 실험실에서 제작된 시료의 실험으로부터 측정되었다. 현장조사 결과에 의하면, 종횡변형률은 서로 상이한 값을 보였으며 전반적으로 변형률의 크기는 차량의 속도가 증가함에 따라 감소함을 보였다. 전반적으로 횡방향 변형률은 종방향 변형률에 비하여 작은값을 보였으며 그 차이는 횡방향에서 더욱 두드러진 경향을 보였다.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

다단 성형 기술을 이용한 차체 부품 개발 (The Study of Manufacturing Technology for a Sill Side by Roll Forming)

  • 김동규;한상욱;전형준;천세환;문영훈
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

Slenderness effects on the simulated response of longitudinal reinforcement in monotonic compression

  • Gil-Martin, Luisa Maria;Hernandez-Montes, Enrique;Aschheim, Mark;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.369-386
    • /
    • 2006
  • The influence of reinforcement buckling on the flexural response of reinforced concrete members is studied. The stress-strain response of compression reinforcement is determined computationally using a large-strain finite element model for bars of varied diameter, length, and initial eccentricity, and a mathematical expression is fitted to the simulation results. This relationship is used to represent the response of bars in compression in a moment-curvature analysis of a reinforced concrete cross section. The compression bar may carry more or less force than a tension bar at a corresponding strain, depending on the relative influence of Poisson effects and bar slenderness. Several cross-section analyses indicate that, for the distances between stirrups prescribed in modern concrete codes, the influence of inelastic buckling of the longitudinal reinforcement on the monotonic moment capacity is very small and can be neglected in many circumstances.

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

머신 비전을 활용한 재료 변형 측정 기술 개발 (Development of Material Deformation Measurement System using Machine Vision)

  • 목은빈;정완진;이창환
    • 소성∙가공
    • /
    • 제32권1호
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

Timoshenko 보의 진동에 미치는 축방향관성력의 영향에 관하여 (Effects of the Longitudinal Inertia Force on Timoshenko Beam Vibration)

  • 이낙주
    • 대한기계학회논문집
    • /
    • 제2권3호
    • /
    • pp.62-68
    • /
    • 1978
  • The influences of the large amplitude free vibrations of simply supported Timoshenko beams with ends restrained to remain a fixed distance apart and with no axial restraints, which cause a longitudinal elastic force and a longitudinal inertia force, respectively, are investigated. The equations of motion derived by an appropriate linearizarion of the nonlinear strain- displacement relation have nonlinear terms arising from large curvature, longitudinal elastic force and longitudinal inertia force. The fourth order nonlinear partial differential equations for the deflection, can be reduced to the nonlinear ordinary differential equations by means of Galerkin procedure and a modal expansion. The general response and frequensy-amplitude relations are derived by the perturbation method of strained parameters. Comparison with previously published results is made.