• Title/Summary/Keyword: Longitudinal Shear Failure

Search Result 136, Processing Time 0.026 seconds

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading (기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan;Nah, Hwan-Sean;Kim, Sang-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

Failure Modes in Piled Embankments (말뚝으로 지지된 성토지반의 파괴형태)

  • 홍원표;윤중만;서문성
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.207-220
    • /
    • 1999
  • Model tests were performed to investigate the failure modes in embankments on soft ground supported by piles with cap beams. In the model tests, Jumunjin standard sand was placed on simulated cap beams and soft ground. The cap beams are placed perpendicular to the longitudinal axis of the embankment. The colored sand and the Jmniin standard sand were placed one after the other above cap beams and soft ground to make lateral stripes with 3mm thickness in the embarkment. The colored sand was prepared by coating the Jumunjin sand with black lead powder. The photographs illustrate the two characteristic modes of failure in embarkments. One is the soil arching failure and the other is the punching shear failure. The failure mode depends on the height of embankment and the space between cap beams. That is, if the embankment is high enough compared with the space between cap beams, it will fail in arching failure. On the other hand if the embarkment is relatively low or the space between piles is too wide, it will fail in punching shear failure. The soil arching develops in embarkment as a semicylindrical arch with a thickness equal to the width of the cap beam. And the soil wedge developed above the cap beams remains intact during both arching and punching failures. The boundary of punching shear failure of the displaced soil mass can be defined on the basis of observation of the photographs.

  • PDF

Performance of hybrid beam-column joint cast with high strength concrete

  • Al-Osta, M.A.;Al-Khatib, A.M.;Baluch, M.H.;Azad, A.K.;Rahman, M.K.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.603-617
    • /
    • 2017
  • This paper presents investigation into the behavior of beam-column joints, with the joint region concrete being replaced by steel fiber reinforced concrete (SFRC) and by ultra-high performance concrete (UHPC). A total of ten beam-column joint specimens (BCJ) were tested experimentally to failure under monotonic and cyclic loading, with the beam section being subjected to flexural loading and the column to combined flexural and axial loading. The joint region essentially transferred shear and axial stresses as received from the column. Steel fiber reinforced concrete (SFRC) and ultra-high performance concrete (UHPC) were used as an innovative construction and/or strengthening scheme for some of the BCJ specimens. The reinforced concrete specimens were reinforced with longitudinal steel rebar, 18 mm, and some specimens were reinforced with an additional two ties in the joint region. The results showed that using SFRC and UHPC as a replacement concrete for the BCJ improved the joint shear strength and the load carrying capacity of the hybrid specimens. The mode of failure was also converted from a non-desirable joint shear failure to a preferred beam flexural failure. The effect of the ties in the SFRC and UHPC joint regions could not be observed due to the beam flexural failure. Several models were used in estimating the joint shear strength for different BCJ specimens. The results showed that the existing models yielded wide-ranging values. A new concept to take into account the influence of column axial load on the shear strength of beam-column joints is also presented, which demonstrates that the recommended values for concrete tensile strength for determination of joint shear strength need to be amended for joints subject to moderate to high axial loads. Furthermore, finite element model (FEM) simulation to predict the behaviour of the hybrid BCJ specimens was also carried out in an ABAQUS environment. The result of the FEM modelling showed good agreement with experimental results.

Flexure-Shear Behavior of Circular Bridge Columns under Cyclic Lateral Loads (반복 횡하중을 받는 원형교각의 휨-전단 거동)

  • Lee Jae-Hoon;Ko Seong-Hyun;Lee Dae-Hyoung;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.823-832
    • /
    • 2004
  • The purpose of this research is to investigate the flexure-shear behavior of bridge columns under seismic loads. Four full scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. The selected test variables are aspect ratio(1.825, 2.5, 4.0), transverse steel configuration, and longitudinal steel ratio. Volumetric ratio of transverse hoop of all the columns is 0.0023 in the plastic hinge region. It corresponds to $24\%$ of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. The columns showed flexural failure or flexure-shear failure depending on the test variables. Failure behavior and seismic performance are investigated and discussed in this paper.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

A Study on the Failure Modes of Neat Kevlar Fabric and Kevlar Liquid Armor Impregnated with Shear Thickening Fluid (케블라 직물과 전단농화유체로 함침된 케블라 액체 방탄재의 파단모드 연구)

  • Yoon, Byung-Il;Song, Heung-Sub;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.17-24
    • /
    • 2007
  • In this study, the failure modes by ballistic impacts were studied both for a neat Kevlar woven fabric and a Kevlar liquid armor impregnated with shear thickening fluid (STF) containing silica particles. These two materials showed quite different failure modes macroscopically in ballistic impacts tests used by Cal.22 FSP and 9mm FMJ bullet. Yarn pull-out for the neat Kevlar woven fabric and yarn fracture occurred partially through all plies from 1st ply to last one for the STF-Kevlar are an important energy absorption mechanisms. The results observed by S.E.M showed commonly fiber damage which are torn skin in the longitudinal fiber direction, fiber split axially and fiber fracture for two materials. The reasons why STF-kevlar liquid armor material exhibits excellent ballistic performance are as follow: firstly the increased friction forces between yarn-yarn and fabric-fabric covered with silica particles and secondary the evolution of shear thickening phenomenmon resulting in suppression of yarn mobility.

Failure Behavior Analysis of R.C Beams using LS-DYNA (LS-DYNA를 이용한 철근 콘크리트 보의 파괴 거동 해석)

  • Park, Gun;Hong, Ki-Nam;Hang, Sang-Hoon;Kwon, Yong-Gil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.297-300
    • /
    • 2008
  • This study focuses on the evaluation of efficiency of the explicit FEM program LS-DYNA to predict the failure behavior of reinforced concrete. Analysis variables of reinforced concrete beams were longitudinal bar ratio, shear steel ratio and span-depth ratio. Failure behavior of reinforced concrete beams was approximately simulated by LS-DYNA.

  • PDF

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Evaluation of Reinforced Concrete Beam's Inelastic Behavior Characteristics using Beam-column Fiber Finite Element considering Shear Deformation Effect (전단변형 효과가 고려된 보-기둥 섬유유한요소를 이용한 철근콘크리트 보의 비탄성 거동특성 평가)

  • Cheon, Ju-Hyun;Hwang, Cheol-Seong;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.130-137
    • /
    • 2017
  • The purpose of this study is to provide a reasonable analytical method for the reinforced concrete beams which shows failure mode of shear and flexure-shear by proposing a modified formulation to consider the effect of shear deformation on the beam-column fiber element based on the flexibility method and a new constitutive law of inelastic shear response history for the section. A total of 6 specimens of reinforced concrete beams which is designed to cause shear failure before yielding longitudinal reinforcement to investigate the influence of the main experimental variables on the shear behavior characteristics and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the newly modified constitutive equation by the authors. The failure mode and the overall behavior characteristics until fracture are predicted appropriately for all specimens and the results are expected to be useful enough for the 3 - D analysis to carry out reliable results of large-scale and complicated structures in the future.