• Title/Summary/Keyword: Longitudinal Safety

Search Result 372, Processing Time 0.027 seconds

A Method of Compounding Application of Longitudinal Grade and Superelevation on Left Curved Section in Arterial for Preventing Hydroplaning (간선도로 좌곡선부 전후구간 수막현상 방지를 위한 종·횡단경사 조합 적용방안)

  • Jung, Ji Hwan;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.105-118
    • /
    • 2015
  • PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section. METHODS : We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature. RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than -0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections. CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.

Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle (자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발)

  • Lee, Hyewon;Song, Taejun;Yoon, Youngmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

Study for Evaluation Standard of Longitudinal Active Safety System (종방향 능동안전장치의 평가기준 연구)

  • Jang, Hyunik;Yong, Boojoong;Cho, Seongwoo;Choi, Inseong;Min, Kyongchan;Kim, Gyuhyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.

Analysis of Rail Stress on Diversity of Railway Bridge Sustem (고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석)

  • Kang, Jae-Yoon;Kim, Byung-Suk;Kwark, Jong-Won;Chin, Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.

Experimental and Analytical Study on the Burst Pressure of Steam Generator Tubes with T-type Combination Cracks (증기발생기 전열관에 존재하는 T-형 복합 균열의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.38-43
    • /
    • 2005
  • Several nuclear power plants reported that they often found the combination cracks, which consist of longitudinal and circumferential cracks in the tubes. For the burst pressure of a tube with a single longitudinal or circumferential crack several experimental equations have been proposed in published literatures. But for the combination crack appropriate fracture criterion has not been proposed yet. In this study the burst pressures of a tube with a longitudinal crack or a T-type combination crack consisting of longitudinal and circumferential cracks were obtained experimentally and analytically. Fracture parameters such as crack opening angle (COA) were investigated by using elastic plastic analysis. Also the burst pressure far a T-type combination crack located near a tubesheet was considered to develop a length-based criterion. Because most of the axial, circumferential or combination cracks initiate in roll transition zone near the tubesheet.

Experimental Study on Hydrofoil Arrangement and Longitudinal Moment Characteristics for Navigation Safety of High Speed Craft (고속선 운항 안정성을 위한 수중익 배치 및 종모멘트 특성에 관한 실험적 연구)

  • Park, Hwa-Pyeong;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • In this study, we have discussed about the effect of hydrofoil arrangement and longitudinal moment characteristic on longitudinal motion stability of fully-submerged hydrofoil by the experiment of tandem hydrofoil model. First of all, tandem hydrofoil model that has canard wing arrangement has been made and characteristics of lift force and drag force by performing the lift force and drag force measuring experiment has also been estimated. Besides, tandem hydrofoil model's wing arrangement which has the initial stability and self stability of longitudinal motion has also been determined. In longitudinal stability experiment of tandem hydrofoil model, the motion characteristic of pitch and heave and the longitudinal stability of foil borne condition by variation of self stability of longitudinal moment and longitudinal distance are estimated. The result from the experiment and it's important conclusion can be described as below; Increase the self stability for longitudinal moment, the higher self stability for pitch motions in a constant pitch angles. By increasing the self stability for longitudinal moment, the range of fluctuation of pitch motion and heave motion for pitch angle also will change relatively small and longitudinal stability is excellent. Lastly, when the lift force of hydrofoil is remain constants, we can conclude that securing the enough self stability for longitudinal moment is essential for stable foil borne condition of tandem hydrofoil.