• Title/Summary/Keyword: Longitudinal Force

Search Result 443, Processing Time 0.021 seconds

Reinforcement Location of Plate Girders with Longitudinal Stiffeners (플레이트 거더의 수평보강재 보강 위치)

  • Son, Byung-Jik;Huh, Yong-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

Longitudinal Ultrasonic Bonding of Strip-type Au Bumps (스트립 형상인 Au 범프의 종방향 초음파 접합)

  • 김병철;김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • The strip Au bumps are bonded using longitudinal ultrasonic far the electronic package. Au bumps on the chip and substrate are aligned in a crossed shape, and the ultrasonic is imposed on the chip to form the solid-state bond between the Au bumps. Deformed bump shapes are calculated using the finite element method, and the bond strength is measured experimentally. The crossed strip Au bumps are deformed similar to the saddle, which provides larger contact surface area and higher friction force. Compared with the previous bonding method between the Au bump and planar pad, higher bond strength is obtained using the crossed strip bumps.

A study on detection of tool fracture and chipping using acoustic emission (Acoustic emission을 이용한 공구파손 및 chipping의 탐지에 관한 연구)

  • 강명순;한응교;최성주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 1986
  • This study was investigated the feasibility of AE application on in-process detection of tool fracture and chipping. Carbon steel SM45C workpiece with longitudinal slots was turned interruptedly on a lathe. AE RMS signal at tool fracture was observed and also the tangential force and the feed observed at the time of tool fracture, the levels of tangential force and the feed force at the time of fracture decrease considerably. In chipping, high level AE signal was observed but there were no changes of cutting force. Peak AE RMS squared is proportional to the area of tool fracture and resultant force. Fracture model of tool fracture is proposed as $V_{p}$ = $C_{1}$ $E_{1}$F(.DELTA. A)$_{0.5}$ and peak AE RMS shows strong correlation with the fracture parameter F(.DELTA.A)$^{0.5}$.

  • PDF

Determination of Optimal Support for Cable-stayed Bridge Designs (사장교의 설계를 위한 최적 지지조건 결정)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.103-109
    • /
    • 2003
  • A numerical analysis of cable-stayed bridge is conducted to determine optimum longitudinal modulus of elasticity which represents the boundary condition between the tower and main girder. The effect of longitudinal modulus of elasticity is investigated for different loading condition (live load, wind load, seismic load), respectively. There are significant changes in the member forces as variations of longitudinal modulus of elasticity, such as, $k_h$=e=100tonf/m/bearing (live load), $k_h$=e=1000tonf/m/bearing (seismic load), However, the wind loads do not affect member forces. The optimum longitudinal modulus of elasticity is determined from considering minimum member forces in the numerical analysis results.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

A Study on the Longitudinal Behavior of 2-Span Continuous Railway Bridge (2경간 연속 철도교의 종방향 거동에 관한 연구)

  • Im, Jung-Soon;Jo, Jae-Byung;Bahng, Yun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.81-90
    • /
    • 2001
  • This paper presents the results of the parametric study on the longitudinal behavior of 2-span continuous railway bridge. To perform the main objective of this paper, the effects of pier shaft stiffness, pier height, the size of pier foundation, and the bearing stiffness on the longitudinal behavior of the bridges are studied. Within the limits of this study, the research result has revealed that the variation of the fixed pier is more effective than that of the moved pier. In addition, the control of the hearing stiffness is much less expensive than that of any other parameters.

  • PDF

Design of Lateral Force Estimation Model for Rough Terrain Mobile Robot and Improving Estimation Reliability on Friction Coefficient (야지 주행 로봇을 위한 횡 방향 힘 추정 모델의 설계 및 마찰계수 추정 신뢰도의 향상)

  • Kim, Jiyong;Lee, Jihong;Joo, Sang Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.

Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles (휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어)

  • Hong Dae-Gun;Hwang In-Yong;SunWoo Myoung-Ho;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

The characteristics of the behaviour of plate girder bridges according to the boundary conditions. (경계조건에 따른 판형교 장대레일의 거동 특성)

  • Min Kyung-Ju;Jung Ue Ha;Kim Young-Kook
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.356-363
    • /
    • 2003
  • The CWR of the plate girder bridges in non-ballast causes the additional axial force on the rail and the bearing due to the temperature axial force and the interaction between the CWR and bridges. This study shows the remarkable improvement of reducing the axial force of the CWR on the non-ballast bridge, compared to conventional methods. New method, which is differently designed in terms of longitudinal semi-rigid bearing, reduces the axial force on the bearing by making the girder act both directions. This method is applicable to most cases of bridges regardless of the restriction of length, and useful to reduce the abrasion and damage of the track material.

  • PDF

Experimental Study on the Sediment Sorting Processes of the Bed Surface by Geomorphic Changes in the Alluvial Channels with Mixed Grain Size (실내실험에 의한 혼합사로 구성된 하상 표층에서 지형변동에 따른 유사의 분급 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1213-1225
    • /
    • 2014
  • The development of bars and sediment sorting processes in the braided channels with the mixed grain sizes are investigated experimentally in this study. The sediment in the steep slope channels discharges with highly fluctuation. However, it discharges with relatively periodic cycles in the mild slope channels. The characteristics and amplitudes of the dominant bars are examined by double fourier analysis. The dimensionless sediment particle size decreases as the longitudinal bed elevation increases. However, the size increases as the longitudinal bed elevation decreases. As the dimensionless critical tractive force in the surface layer ratio to the force in the subsurface layer increases, the surface geometric mean size of sediments and the dimensionless sediment particle size decrease. This means that coarse matrix is formed with the dimensionless tractive force by the sediment selective sorting.