• 제목/요약/키워드: Long-term load forecasting

검색결과 32건 처리시간 0.034초

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

시간별 전력부하 예측 (Hourly load forecasting)

  • 김문덕;이윤섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.495-497
    • /
    • 1992
  • Hourly load forecasting has become indispensable for practical simulation of electric power system as the system become larger and more complicated. To forecast the future hourly load the cyclic behavior of electric load which follows seasonal weather, day or week and office hours is to be analyzed so that the trend of the recent behavioral change can be extrapolated for the short term. For the long term, on the other hand, the changes in the infra-structure of each electricity consumer groups should be assessed. In this paper the concept and process of hourly load forecasting for hourly load is introduced.

  • PDF

기상 변수를 고려한 모델에 의한 단기 최대전력수요예측 (Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable)

  • 고희석;이충식;최종규;지봉호
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.73-78
    • /
    • 2001
  • 특수일 부하를 예측하기 위하여 BP 신경회로망 모형과 다중 회귀모형을 구성한다. 신경회로망 모형은 패턴 변환비를 이용하고, 다중회귀 모형은 평일 환산비를 이용하여 특수일 부하를 예측한다. 주간 피크 부하예측 모형에 패턴 변환비를 이용하여 짧고 긴 특수일 부하를 예측 한 결과 주간 평균 오차율이 1∼2[%]로 나와 본 기법의 적합성을 확인할 수 있다. 하지만, 패턴 변환비 방법으로는 하계의 특수일 부하 예측은 어려웠다. 따라서 기온-습도, 불쾌지수 등을 설명변수로 하는 다중 회귀 모형을 구성하고 평일 환산비를 이용하여 하계의 특수일 부하를 예측한다. 평일만의 예측 모형과 예측 결과를 비교해 보면 월 평균 오차율이 비슷하게 나와 이용한 방법의 적합성을 확인하였다. 그리고, 통계적 검정을 통해 구성한 예측 모형의 유효성을 입증할 수 있었다. 이로서 본 연구에서 제시한 특수일 부하를 예측하는 기법의 적합성을 확인함으로서 피크 부하 예측시 큰 난점 중의 하나가 해결되었다.

  • PDF

퍼지 신경회로망을 이용한 장기 전력수요 예측 (Long-term Load Forecasting using Fuzzy Neural Network)

  • 박성희;최재균;박종근;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.491-493
    • /
    • 1995
  • In this paper, the method of long-term load forecasting using a fuzzy neural network of which input is a fuzzy membership function value of a input variable like as GNP which is considered to affect demand of load. The proposed method was applicated in Korea Electric Power Corporation (KEPCO). The comparison with Error Back-Propagation Neural Network has been shown.

  • PDF

회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측 (Short-term Peak Load Forecasting using Regression Models and Neural Networks)

  • 고희석;지봉호;이현무;이충식;이철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

경제지표를 이용한 중장기 배전계획 수립에 관한 연구 (Long-term Distribution Planning considering economic indicator)

  • 최상봉;김대경;정성환;배정효;하태현;이현구;김점식;문봉우;한상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1468-1471
    • /
    • 1999
  • This paper presents a method of the regional long-term distribution planning considering economic indicator with the assumption that energy demands proportionally increases with the economic indicators. For the practical distribution planning, it is necessary to regional load forecasting, distribution substation planning, distribution feeder planning. Accordingly, in this paper, after performing regional load forecasting considering economic indicator, it is performed distribution substation planning and distribution feeder planning in order by using this result. For accurate distribution planning, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because distribution planning results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. In this paper, various steps microscopically and macro scopically are used for the regional long-term distribution planning in order to increase the accuracy and practical use of the results

  • PDF

계통계획을 위한 지역별 전력수요예측 (Regional Electricity Demand Forecasting for System Planning)

  • 조인승;이창호;박종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.292-294
    • /
    • 1998
  • It is very important for electric utility to expand generating facilities and transmission equipments in accordance with the increase of electricity demand. Regional electricity demand forecasting is among the most important step for long-term investment and power supply planning. The main objectives of this paper are to develop the methodologies for forecasting regional load demand. The Model consists of four models, regional economy, regional electricity energy demand, areal electricity energy demand. and areal peak load demand. This paper mainly suggests regional electricity energy demand model and areal peak load demand. A case study is also presented.

  • PDF

AREA 활용 전력수요 단기 예측 (Short-term Forecasting of Power Demand based on AREA)

  • 권세혁;오현승
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

지역별 장기 전력수요 예측 (Long-term Regional Electricity Demand Forecasting)

  • 권영한;이창호;조인승;김재균;김창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.87-91
    • /
    • 1990
  • Regional electricity demand forecasting is among the most important step for lone-term investment and power supply planning. This study presents a regional electricity forecasting model for Korean power system. The model consists of three submodels, regional economy, regional electricity energy demand, and regional peak load submodels. A case study is presented.

  • PDF