신선한 쓰레기 매립지에서는 쓰레기에 포함되어 있는 유기물의 분해로 인하여 장기간에 걸쳐 상당한 양의 침하가 유발되는 것으로 알려져 있다. 본 연구에서는 여러 신선한 쓰레기 매립지들의 침하자료에 대하여 기존에 제안된 몇몇 침하모델들을 적용하였으며. 얻어진 침하예측곡선과 장기침하량을 분석함으로써 분해로 의한 침하양상이 장기침하량 예측에 미치는 영향을 살펴보았다. 사용된 모델과는 상관없이 선정된 모델변수 값들이 분해효과를 포함하지 않는 한 장기침하를 적절히 평가할 수 없었다. 몇몇 예측방법 가운데 Gibson & Lo 모델과 쌍곡선 모델은 쓰레기 매립지의 장기침하 거동특성을 비교적 타당성 있게 예측한 반면에 power creep law는 상당히 과다예측하는 것으로 나타났다.
쓰레기 매립지의 장기 침하 메카니즘은 일반적인 홀의 거동과는 달리 생물학적인 분해에 의해서 크게 영향을 받는다. 본 논문에서는 쓰레기 매립지의 장기 침하량(역학적 이차침하량과 분해에 의한 이차침하량)을 예측하기 위하여 두 식이 사용되었다. 역학적 이차침하는 변형률-대수 시간에서 선형적인 관계를 갖는다고 가정하였다. 분해에 의한 침하를 평가하기 위하여, 분해 가능한 쓰레기 고형물의 용액화에 관련된 일차반응기작으로 모사되는 가수분해 과정을 고려한 모델을 숙성된 (aged) 쓰레기로 충진된 Lysimeter 침하자료에 적용하였다. 본 연구에서는 분해과정 가운데 쓰레기 고형물의 용액화로 말미암아 유발되는 침하를 효과적으로 모사할 수 있는 간단한 수학적 모델을 제안하고자 하였다.
한국의 1980~2017년까지의 데이터를 사용하여 성별 임금격차의 장기 추세를 확인하고, 요인 분해기법을 사용하여 발생 요인을 살펴보았다. 1990년대까지는 성별 임금격차 감소 추세가 뚜렷하였으나, 2000년대 이후 감소 추세가 전반적으로 둔화한 것이 특징적이다. 요인 분해기법으로는 Gelbach의 요인 분해기법을 사용하였다. 분석 결과 연령, 학력, 사업체 규모, 산업 및 직업 등 전통적으로 임금을 결정하는 요인들이 성별 임금격차를 설명하는 비중이 지속적으로 감소하고 있음을 알 수 있었다. 특히 연령과 학력이 성별 임금격차를 설명하는 비중이 줄어들고, 근속연수가 설명하는 비중이 늘어나는 것으로 나타났다. 또한, 산업이 성별 임금격차를 설명하는 비중이 1990년대 감소하다가 2000년대 이후 다시 증가하는 경향이 있음을 알 수 있었다.
For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.
Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.
Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
Nuclear Engineering and Technology
/
제54권12호
/
pp.4441-4448
/
2022
The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.
A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .
쓰레기 매립지는 쓰레기 고형물이 장기간에 걸쳐 생물학적으로 분해됨으로 말미암아 상당한 양의 침하가 유발되는 독특한 침하특성을 갖고 있다. 분해에 의한 총 압축량은 분해가능한 쓰레기의 고형물 함량 및 매립연한에 크게 의존하며. 매립지 침하의 안정화 속도는 분해조건에 의존한다. 쓰레기 매립지의 이러한 독특한 침하거동을 규명하기 위하여 제안되었던 침하모델을 매립 연한이 서로 다른 쓰레기 매립지 침하자료들에 대하여 적용하였다. 모델 변수 값들이 각각 구해 졌으며, 그 경향들이 분석되었다. 쓰레기 매립지의 장기 침하 양상이 제안된 모델에 의해 잘 예측될 수 있으며, 매립연한 및 두개의 적합한 설계변수에 근거하여 잔존 침하량을 예측할 수 있다.
Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.
This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.