• Title/Summary/Keyword: Long-term damage

Search Result 650, Processing Time 0.025 seconds

Structural Improvement of the Shading Structures against Meteorological Disasters in Ginseng Fields (인삼재배 해가림시설의 기상재해와 구조개선대책)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.98-106
    • /
    • 2003
  • In order to set up structural improvement strategy against meteorological disasters of the shading structures in ginseng fields, structural safety analyses as well as some case studies of structural damage patterns were carried out. According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9 cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6 cm, 25.8 cm, and 20.0 cm respectively. So types of shading structures should be selected according to the regional design snow depth. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disasters were caused by heavy snow and it was found that a half break and complete collapse of structures were experienced by about 70% of snow damage. In addition to maintenance, repair and reinforcement, it is also recommended that improved model of shading structures for ginseng cultivation should be developed as a long term countermeasures against meteorological disasters.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part II - Fatigue Damage Estimation (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part II - 피로 손상도 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Concerns are emerging in marine industry on the additional fatigue damages induced by hydroelasticity, and large container carriers, among others, are considered to be susceptible to this hydroelastic response due to its large size, deck openings and high speed. This study focuses on the fatigue damage estimation of 9,400TEU container carrier based on the full scale measurement data via long-base strain gage installed on the ship. Some correlation analyses have been also done to check whether there was significant torsional response during the voyage. Direct cycle counting method was used to derive stress histogram and the long-term fatigue damage was estimated based upon that analyzed data. It turned out that the fatigue damage of this particular ship during the measurement period increased by more than 60% due to the hydroelastic response of the hull, and main contribution is considered to come from vertical bending mode.

Long-Term Performance of Geotextile and Geomembranes by Installation Damage (시공 시 손상에 의한 지오텍스타일 및 지오멤브레인의 장기성능)

  • 전한용;목문성;류원석;이준석;홍상진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.235-238
    • /
    • 2003
  • 폐기물 매립시스템은 크게 폐기물의 토양으로의 유출에 의한 오염방지를 위한 lining system과 폐기물에서 발생하는 가스의 방출차단과 빗물의 매립시스템으로의 침투방지를 위한 covering system으로 나뉘어진다. Lining system은 폐기물 하부에 차수층, 침출수 배수층, 침출수 차단층과 차수재 보호층 순으로 구성되며, covering system은 폐기물 상부에 집수관을 설치한 후 중간 복토층을 둔 후, 가스 차단층, 봉합층, 배수장치와 보호층 순으로 구성되어진다. (중략)

  • PDF

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Economic and non-economic loss and damage to climate change: evidence from a developing country shrimp farms to cyclone Bulbul

  • Islam, Md. Monirul;Nipa, Tanjila Akter;Islam, Md. Sofiqul;Hasan, Mahmudul;Khan, Makidul Islam
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.214-230
    • /
    • 2022
  • Loss and damage have become a vital contemporary issue in climate change studies and actions in developing countries. However, studies are scant on this in the fisheries sector around the world. In Bangladesh, there is no study on the loss and damage in fisheries dependent communities. This study assesses economic and non-economic loss and damage to coastal shrimp farms due to cyclone Bulbul in Gabura Union of Shyamnagar Upazila, Satkhira district, using a mixed method approach. Results show that all shrimp farms' dependent communities are affected by cyclone Bulbul to some extent. About 14%, 57%, and 29% of the farms were totally, heavily and moderately damaged due to farm inundation and dyke damage. The estimated mean loss and damage per shrimp farm was worth USD 4,633. Around 31% and 72% of the farms' fencing nets and traps were lost, which was worth USD 333 per farm. There were also loss and damage to other resources such as houses, solar panels, livestock and agricultural crops where the estimated mean loss and damage per household was worth USD 3,170. This study reported that the rich shrimp farmers encountered proportionately more economic loss and damage than their poor counterparts. However, this does not mean that the poor suffered less. The current study found a range of non-economic loss and damage in different aspects of the shrimp farmers' household members such as unbearable mental pain, deterioration of health, physical injuries, disabilities, etc. and access to services (e.g., inadequate food, lack of safe drinking water, lack of medical facilities, disruption of education systems), social infrastructure (e.g., damage of roads and markets) and disturbance of cultural functions. The findings suggest that urgent short- and long-term actions may be taken to save the aquaculture farms and dependent livelihoods from economic and non-economic loss and damage to cyclones in future.

A study on the Trend Analysis and Road map Design of the Facilities Disaster and Safety Technology in the Country and Oversea (국내외 인적재난 안전기술개발 동향분석 및 로드맵 수립에 관한 연구)

  • Lee, Tae Shik;An, Jae Woo;Song, Cheol Ho;Seok, Geum Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.49-57
    • /
    • 2013
  • This paper is to show the long-term roadmap by analyzing the development trend for the safety technology of facility disaster in the country and abroad, and it is designed to plan the long term and roadmap in response to change the disaster environment. Recently in the country, it is increasing the needs of the long term roadmap design of the facility disaster research development in the facility disaster, by the repidly of the social and the living and the related governments response's changing. The U.S. is going to develop the disaster responding research by planning the its master plans, including the NRF (National Responing Framwork), the NIMS (National Incident Management System), and its sinarios etc.. Japan is going to develop the research planning in the annual report of the disaster prevention, and we going to do the study projects about the facility disaster area with the NEMA (National Emergency Management Agency) and NDMI (National Disaster Management Institute). This paper is showed to design the long term roadmap of the facility disaster's study development, and to minimize the damage of the man and his property, and to set the study development system of the national facility disaster, and furthering to make the resilient planning in changing of the facility disaster's environment.

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

A Study on Analysis for Decrease Cause and Improve Management Method of Landscape Tree in Highway (고속도로 조경수 감소 원인 분석 및 관리 개선에 관한 연구)

  • Jeon, Gi-Seong;Woo, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.86-95
    • /
    • 2003
  • The object of this paper is to correct check the tree situation and quantity around highway. Also, those data utilize in order to establish plan about how to the long and short term landscape construction and maintain program. The result of this study can be summarized as follows; 1. Tree decrease rates for 8 branch offices were Jongbu(5.62%), Gangwon(4.32%), Chungcheong (3.35%), Honam(5.62%), Gyeongbuk(3.06%), Gyeongnam(5.60%), Seorak training center(0.31%), Headquarter(1.54%). Also decrease causes were traffic accidents(1.8%), air po11ution(4.7%), humid damage(0.9%), insect and disease(1.2%), wind and rainfall(3.4%), dry damage(3.5%), cold damage (1.0%), fire(3.1%), damage of the man and anima1(4.1%), remove bad tree(13.1%), bad rooting(9.5%) and etc.(53.7%). 2. Improve methods of tree death problems were regulation management(ferti1ize, irrigation and pesticide work), improvement of draining system, Pull out the weeds, Plant native plants, utilize organic matter fertilize and plant environment trees.

Assessment of Creep Damage on a High Temperature Pipe Bend of 0.5Cr0.5Mo0.25V Ferritic Steel for Thermal Power Plant (화력발전소용 0.5Cr 0.5Mo 0.25V 강 곡관배관의 크리프 손상평가)

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Bong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.127-134
    • /
    • 2010
  • Components in thermal power plants are subjected to service conditions under which creep damages take place causing material exhaustion. Comprehensive creep damage investigations have been performed on a 0.5Cr0.5Mo0.25V pipe bend which had been taken out of service after 117,603h and 501 start-ups because of severe cracks. The propagation of creep damage in a long term exposed pipe bend has been analysed by the replication, Indentation and hardness tests. Also, Calculation of creep lifetime has been investigated in order to verify actual lifetime of a damaged pipe bend. By measuring diametrical expansion, Accumulated creep strain and creep strain rate were calculated. Calculated results of creep lifetime on the Larson-Miller Parameter method are good agreement with actual service-exposed hour.

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method (초음파에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Chung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF