• Title/Summary/Keyword: Long-memory Properties

Search Result 54, Processing Time 0.031 seconds

Method of Fast Interpolation of B-Spline Volumes for Reconstructing the Heterogeneous Model of Bones from CT Images (CT 영상에서 뼈의 불균질 모델 생성을 위한 B-스플라인 볼륨의 빠른 보간 방법)

  • Park, Jun Hong;Kim, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.373-379
    • /
    • 2016
  • It is known that it is expedient to represent the distribution of the properties of a bone with complex heterogeneity as B-spline volume functions. For B-spline-based representation, the pixel values of CT images are interpolated by B-spline volume functions. However, the CT images of a bone are three-dimensional and very large, and hence a large amount of memory and long computation time for the interpolation are required. In this study, a method for resolving these problems is proposed. In the proposed method, the B-spline volume interpolation problem is simplified by using the uniformity of pixel spacing of the image and the properties of B-spline basis functions. This results in a reduction in computation time and the amount of memory used. The proposed method was implemented and it was verified that the computation time and the amount of memory used were reduced.

Information, Knowledge, Wisdom: A Progressive a Value Added Chain

  • Satija, Mohinder Partap
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.5 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • The paper lists problems in defining information and knowledge and also in differentiating between the two. It separately describes physical, economic and cognitive properties of information and knowledge. A long drawn comparative chart of the nature, characteristics and properties of knowledge and information is given. In addition it explains their relation with wisdom. The paper emphasizes that knowledge is only a human preserve. Also it finds common grounds and mutual dependence between information, knowledge and wisdom. The purpose is to clear confusion between knowledge and information, and find their relation with wisdom and tradition by placing these in value added and evolutionary chain: Signals--data-- Information--Knowledge--Wisdom--Tradition.

Some limiting properties for GARCH(p, q)-X processes

  • Lee, Oesook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.697-707
    • /
    • 2017
  • In this paper, we propose a modified GARCH(p, q)-X model which is obtained by adding the exogenous variables to the modified GARCH(p, q) process. Some limiting properties are shown under various stationary and nonstationary exogenous processes which are generated by another process independent of the noise process. The proposed model extends the GARCH(1, 1)-X model studied by Han (2015) to various GARCH(p, q)-type models such as GJR GARCH, asymptotic power GARCH and VGARCH combined with exogenous process. In comparison with GARCH(1, 1)-X, we expect that many stylized facts including long memory property of the financial time series can be explained effectively by modified GARCH(p, q) model combined with proper additional covariate.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

Fabrication and Properties of MFISFET using SrBi2Ta2O9SiN/Si Structures (SrBi2Ta2O9SiN/Si 구조를 이용한 MFISFET의 제작 및 특성)

  • 김광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.383-387
    • /
    • 2002
  • N-channel metal-ferroelectric-insulator-semiconductor field-effect-transistors (MFISFET's) by using $SrBi_2Ta_2O_9$/Silicon Nitride/Si (100) structure were fabricated. The fabricated devices exhibit comfortable memory windows, fast switching speeds, good fatigue resistances, and long retention times that are suitable for advanced ferroelectric memory applications. The estimated switching time and polarization ($2P_r$) of the fabricated FET measured at applied electric field of 376 kV/cm were less than 50 ns and about 1.5 uC/$\textrm{cm}^2$, respectively. The magnitude of on/off ratio indicating the stored information performance was maintained more than 3 orders until 3 days at room temperature. The $I_DV_G$ characteristics before and after being subjected to $10^11$ cycles of fatigue at a frequency of 1 MHz remained almost the same except a little distortion in off state.

SMA-based devices: insight across recent proposals toward civil engineering applications

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.111-125
    • /
    • 2019
  • Metallic shape memory alloys present fascinating physical properties such as their super-elastic behavior in austenite phase, which can be exploited for providing a structure with both a self-centering capability and an increased ductility. More or less accurate numerical models have been introduced to model their behavior along the last 25 years. This is the reason for which the literature is rich of suggestions/proposals on how to implement this material in devices for passive and semi-active control. Nevertheless, the thermo-mechanical coupling characterizing the first-order martensite phase transformation process results in several macroscopic features affecting the alloy performance. In particular, the effects of day-night and winter-summer temperature excursions require special attention. This aspect might imply that the deployment of some devices should be restricted to indoor solutions. A further aspect is the dependence of the behavior from the geometry one adopts. Two fundamental lacks of symmetry should also be carefully considered when implementing a SMA-based application: the behavior in tension is different from that in compression, and the heating is easy and fast whereas the cooling is not. This manuscript focuses on the passive devices recently proposed in the literature for civil engineering applications. Based on the challenges above identified, their actual feasibility is investigated in detail and their long term performance is discussed with reference to their fatigue life. A few available semi-active solutions are also considered.

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

A Study on the Fatigue Properties of Ti-Ni Shape Memory Alloys (Ti-Ni계 형상기억 합금의 피로특성에 관한 연구)

  • S.Y Kim;S. Miyazaki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.482-490
    • /
    • 1997
  • The effects of strain amplitude. test temperature and stress on the fatigue properties for Ti-Ni wires were investigated using a rotary bending fatigue tester specially designed for wires. The fatigue test results were discussed in connection with the static tensile properties. The DSC measurement was conducted after fatigue test in order to clarify the change of transformation behavior due to the progress of fatigue. Under the temperature below or near the Af, the strain amplitude($\varepsilon_a$)-failure life (Nf) curve showed to be composed of three straight lines with two turning points. Of the 2 turning points, the upper one was coincident with the elastic limit strain and the lower one with the proportional limit strain. With rising of the test temperature above Af, the pattern of $\varepsilon_a$-Nf curve changed gradually to composition of 2 straight lines. The $\varepsilon_a$-Nf curve shifted depending on test temperature. In the short and medium life zones, the higher the temperature was, the shorter the fatigue life. However, in the long life zone, above the Af temperature, the fatigue life was not affected by the temperature. The transformation enthalpy measured after fatigue test was dependent on Nf, $\varepsilon_a$, and test temperature.

  • PDF

The Effects of PEOE-Based Class on Learners' Long- and Short-Term Retention and Affective Area (PEOE 수업모형을 적용한 수업이 학습자의 장·단기 파지 및 정의적 영역에 미치는 효과)

  • Choi, Sung-Bong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.878-890
    • /
    • 2013
  • The purpose of this study is to apply the PEOE class model that can enhance students' scientific creative problem-solving ability and self-directed learning ability in the middle school science subject and analyze the effects of it on students' long- and short-term retention, scientific creative problem-solving ability, and self-directed learning characteristics. And the paper has gained the following results: First, according to the result of analysis through the pre-test, post-test, and delay test to examine the effects of PEOE-based class on learners' long- and short-term retention, it is found to be statistically significant in the significant level of .05. In other words, the class using PEOE influences learners' short-term retention significantly, but it is even more effective in transmitting the concept that students acquire into their long-term memory. Second, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' scientific creative problem-solving ability, it is found to be statistically significant in the significant level of .05 in general. However, 'elaboration' and 'originality', the subfactors of scientific creative problem-solving ability, do not indicate significant effects. Third, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' self-directed learning characteristics, it is found to be statistically significant in the significant level of .05 as a whole. However, 'openness' and 'future-oriented self-understanding', the subfactors of self-directed learning characteristics, do not exert significant effects. Based on the above study results, it can be concluded that PEOE-based class is more effective for learners' academic achievement in science, scientific creative problem-solving ability, and self-directed learning characteristics than lecture-method instruction regarding the middle school science unit of 'The Properties of Air and Weather Change'.

A Nonvolatile Refresh Scheme Adopted 1T-FeRAM for Alternative 1T-DRAM

  • Kang, Hee-Bok;Choi, Bok-Gil;Sung, Man-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.98-103
    • /
    • 2008
  • 1T1C DRAM has been facing technological and physical constraints that make more difficult their further scaling. Thus there are much industrial interests for alternative technologies that exploit new devices and concepts to go beyond the 1T1C DRAM technology, to allow better scaling, and to enlarge the memory performance. The technologies of DRAM cell are changing from 1T1C cell type to capacitor-less 1T-gain cell type for more scalable cell size. But floating body cell (FBC) of 1T-gain DRAM has weak retention properties than 1T1C DRAM. FET-type 1T-FeRAM is not adequate for long term nonvolatile applications, but could be a good alternative for the short term retention applications of DRAM. The proposed nonvolatile refresh scheme is based on utilizing the short nonvolatile retention properties of 1T-FeRAM in both after power-off and power-on operation condition.