• Title/Summary/Keyword: Long-distance sensor

Search Result 155, Processing Time 0.029 seconds

A study on the long distance data transmission of underwater acoustic sensor (수중 음향센서의 원거리 데이터 전송에 관한 연구)

  • Han, Jeong-Hee;Lee, Byung-Hwa;Kim, Dong-Wook;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.240-245
    • /
    • 2019
  • This paper is a study result on long distance transmission of underwater acoustic sensor data over cable. The data transceiver is designed using the LVDS (Low Voltage Differential Signaling) transmission scheme, and the jitter characteristics are analyzed by measuring the long distance transmission signal through the cable. In order to reduce the jitter, a pre-emphasis technique is applied to compensate the transmitting signal to be attenuated by long distance transmission, and the transmission characteristics were verified according to the distance.

Development Small Size RGB Sensor for Providing Long Detecting Range (원거리 검출범위를 제공하는 소형 RGB 센서 개발)

  • Seo, Jae Yong;Lee, Si Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.174-182
    • /
    • 2015
  • In this paper, we developed the small size RGB sensor that recognizes a long distance using a low-cost color sensor. Light receiving portion of the sensor was used as a camera lens for far distance recognition, and illuminating unit was increased the strength of the light by using a high-power white LED and a lens mounted on the reflector. RGB color recognition algorithm consists of the learning process and the realtime recognition process. We obtain a normalized RGB color reference data in the learning process using the specimens painted with target colors, and classifies the three colors using the Mahalanobis distance in recognition process. We apply the developed the RGB color recognition sensor to a prototype of the part classification system and evaluate the performance of its.

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

Development of Automated Guidance Tracking Sensor System Based on Laser Distance Sensors

  • Kim, Joon-Yong;Kim, Hak-Jin;Shim, Sung-Bo;Park, Soo-Hyun;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Purpose: Automated guidance systems (AGSs) for mobile farm machinery have several advantages over manual operation in the crop production industry. Many researchers and companies have tried to develop such a system. However, it is not easy to evaluate the performance of an AGS because there is no established device used to evaluate it that complies with the ISO 12188 standard. The objective of this study was to develop a tracking sensor system using five laser distance measurement sensors. Methods: One sensor-for long-range distance measurement-was used to measure travel distance and velocity. The other four sensors-for mid-range distance measurement-were used to measure lateral deviation. Stationary, manual driving, and A-B line tests were conducted, and the results were compared with the real-time kinematic differential global positioning system (RTK-DGPS) signal used by the AGS. Results: For the stationary test, the average error of the tracking sensor system was 1.99 mm, and the average error of the RTK-DGPS was 15.19 mm. For the two types of driving tests, the data trends were similar. A comparison of the changes in lateral deviation showed that the data stability of the developed tracking system was better. Conclusions: Although the tracking system was not capable of measuring long travel distances under strong sunlight illumination because of the long-range sensor's limitations, this dilemma could be overcome using a higher-performance sensor.

A Distance Estimation Algorithm Based on Multi-Code Ultrasonic Sensor and Received Signal Strength (다중 코드 초음파와 전파 신호 강도를 이용한 거리 측정)

  • Cho, Bong-Su;Kim, Phil-Soo;Moon, Woo-Sung;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • This paper reveals a distance estimation algorithm based on multi-code ultrasonic and wireless sensor network. For measuring the distances among the sensor nodes, each ultrasonic transmitter transmits multi-code ultrasonic signal simultaneously. Receivers use cross correlation method to separate the coded signals. The information of measured distances is broadcasted to each sensor node by wireless sensor network. The wireless sensor network measures the distance among the sensor nodes using the received signal strength of the broadcasting. The multi-code ultrasonic have a limitation of measurable distance. And the received signal strength is affected from an environment. This paper measures a distance using ultrasonic and a received signal strength in short range. These measured data are applied to the least square estimation algorithm. By the expansion of the fitting curve, a distance measurement in long range using the received signal strength is compensated. The coupled system reduce the error to an acceptable level.

A Study of the Optical System of a Time-of-flight Laser Distance Sensor for a Long Distance with Minimized Divergence Beam Angle (빔 확산각 최소화를 통한 장거리 측정용 ToF 레이저 거리센서 광학계 설계 연구)

  • Lee, Hyun-Hwa;Seo, Jae-Yeong;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • In this paper, a study is conducted on the design of an optical system of a time-of-flight (TOF) laser distance sensor that can measure long distances by minimizing beam divergence. When measuring a long distance, the amount of light on the object's surface decreases as the distance increases, due to the diffusion angle of the laser beam, and thus the beam at the sensor also decreases, causing measurement errors. In general, a cylindrical lens is used to reduce the divergence beam angle. However, an optical system using a cylindrical lens has the problem of degraded performance due to the difficulty with assembly tolerance, as well as the problem of the increased size of the optical system, and thus the use of aspherical lenses has been increasing recently. Therefore, in this study, the optical efficiencies and assembly tolerances of optical systems using respectively a cylindrical lens and an aspherical lens are compared and analyzed.

Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network (고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템)

  • Kang, Hoyong;Jang, Youn-Seon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.

On the use of an acoustic sensor for measuring the level of a zinc pot (용융아연욕 탕면 높이 측정을 위한 초음파 센서의 사용에 관하여)

  • 박상덕;임태균;이옥산
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.836-839
    • /
    • 1996
  • Throughout CGL (Continuous Galvanizing Line) in steel works, zinc-coated steel sheets are produced which are used where long-running corrosion resistivity is required. During the galvanizing process, top dross is created and floated on the zinc pot. Because the dross leaves ill patterns on the coated sheets, a robot system is developed to automatically collect and remove the top dross. It consists of a robot and its carriage system, a pot level sensor, a system controller, and special robot tools. For the first time the level of zinc pot must be measured and fed back to the robot controller to avoid submersion of the robot hand into the hot zinc pot. In this paper, acoustic distance sensor is tested as a candidate for the pot level sensor in the view point of hot environment. Some considerations on the use of the acoustic distance sensor will be denoted.

  • PDF

Recognition of contact surfaces using optical tactile and F/T sensors integrated by fuzzy fusion algorithm (광촉각 센서와 힘/역학센서의 퍼지융합을 통한 접촉면의 인식)

  • 고동환;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.628-631
    • /
    • 1996
  • This paper proposes a surface recognition algorithm which determines the types of contact surfaces by fusing the information collected by the multisensor system, consisted of the optical tactile and force/torque sensors. Since the image shape measured by the optical tactile sensor system, which is used for determining the surface type, varies depending on the forces provided at the measuring moment, the force information measured by the f/t sensor takes an important role. In this paper, an image contour is represented by the long and short axes and they are fuzzified individually by the membership function formulated by observing the variation of the lengths of the long and short axes depending on the provided force. The fuzzified values of the long and short axes are fused using the average Minkowski's distance. Compared to the case where only the contour information is used, the proposed algorithm has shown about 14% of enhancement in the recognition ratio. Especially, when imposing the optimal force determined by the experiments, the recognition ratio has been measured over 91%.

  • PDF