• Title/Summary/Keyword: Long term strength

Search Result 898, Processing Time 0.032 seconds

A Study on Development Strategies of the Korean Fisheries Outlook Project based on AHP (AHP 기법을 이용한 우리나라 수산업관측사업의 추진방향에 관한 연구)

  • Nam, Jong-Oh;Nho, Seung-Guk
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.1
    • /
    • pp.25-52
    • /
    • 2010
  • The purpose of this paper is to suggest major strategies and necessary new projects for the medium- and long-term development of the Korean Fisheries Outlook Project. To suggest the Korean Fisheries Outlook Center with the above purpose, this paper employs Analytic Hierarchy Process analysis based on surveys obtained by special groups related with the KFOP. The survey is broadly composed of two goals; the medium- and long-term development directions and setting up of new furtherance projects. Each goal has upper and lower strategies respectively. The first goal, the medium- and long-term development directions, has four factors as upper strategies. The upper strategies are composed of accuracy, efficiency, timeliness, and political effectiveness of the fisheries outlook information. In addition, each upper strategy has three lower strategies respectively. For example, accuracy of the fisheries outlook information includes strength of data collection function, strength of satellite photography function, and strength of data analysis function. The second goal, setting up of new furtherance projects, has three factors as upper strategies. The upper strategies consist of accuracy promotion of outlook information using high-technique, field expansion of outlook species, and strength of analyzing function on oversea fisheries information. Each upper strategy has three lower strategies respectively. For instant, accuracy promotion of outlook information using high-technique has strength of information analysis function covered from production to consumption, strength of satellite information function, and structure of forecasting model on demand and supply by outlook species. The above upper and lower strategies were analytically drawn out through insightful interviews with special groups such as officials of the government, presidents of the producer and distributor groups, and researchers of the Korea Maritime Institute and other research institutes. As a result of AHP analysis, first, priorities of upper strategies with the medium- and long-term development directions are analyzed as accuracy, timeliness, political effectiveness, and efficiency in order. Also, priorities of all lower strategies reflecting priorities of upper strategies are examined as includes strength of data collection function on the fisheries outlook information, delivery of rapid information on outlook products for all people interested, strength of data analysis function on fisheries outlook information, strength of consumption outlook function on fish products, and strength of early warning system for domestic fish products in order. Second, priorities of upper strategies with the setting up of new furtherance projects are analyzed as accuracy promotion of outlook information using high-technique, field expansion of outlook species, and strength of analysis function on oversea fisheries information in order. In addition, priorities of all lower strategies reflecting priorities of upper strategies are examined as building up of forecasting model on demand and supply by outlook species, strength of information analysis function covering all steps from production to consumption, expansion of consumption outlook for consumers, strength of movement analysis function of oversea farming industry, and outlook expansion of farming species.

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test (실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가)

  • Sangrae Lee;Seunghwan Seol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.19-24
    • /
    • 2023
  • Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.

Modeling on Compressive Strength in High Performance Concrete Using Porosity (공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링)

  • Lee, Hack Soo;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.124-133
    • /
    • 2012
  • Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans

  • Elif Varol;Didem Benzer;Nazli Tunar Ozcan
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • Natural pozzolans are used as additives in cement to develop more durable and high-performance concrete. Pozzolanic activity index (PAI) is important for assessing the performance of a pozzolan as a binding material and has an important effect on the compressive strength, permeability, and chemical durability of concrete mixtures. However, the determining of the 28 days (short term) and 90 days (long term) PAI of concrete mixtures is a time-consuming process. In this study, to reduce extensive experimental work, it is aimed to predict the short term and long term PAIs as a function of the chemical compositions of various natural pozzolans. For this purpose, the chemical compositions of various natural pozzolans from Central Anatolia were determined with X-ray fluorescence spectroscopy. The mortar samples were prepared with the natural pozzolans and then, the short term and the long term PAIs were calculated based on compressive strength method. The effect of the natural pozzolans' chemical compositions on the short term and the long term PAIs were evaluated and the PAIs were predicted by using multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS) model. The prediction model results show that both reactive SiO2 and SiO2+Al2O3+Fe2O3 contents are the most effective parameters on PAI. According to the performance of prediction models determined with metrics such as root mean squared error (RMSE) and coefficient of correlation (R2), ANFIS models are more feasible than the multiple regression model in predicting the 28 days and 90 days pozzolanic activity. Estimation of PAIs based on the chemical component of natural pozzolana with high-performance prediction models is going to make an important contribution to material engineering applications in terms of selection of favorable natural pozzolana and saving time from tedious test processes.

Long-Term Behaviors of Reinforced Concrete Pier Structures Considering Long Column Effects (철근콘크리트 장주 교각의 시간에 따른 거동)

  • Jung, Hyun-Soo;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.69-72
    • /
    • 2005
  • For reinforced concrete column under sustained loads, the member suffers additional lateral deflection due to creep. This deflection leads to additional bending in the member, which in turn causes the column to deflect still further. Therefore the secondary moment due to additional deflection causes an increase in primary moment and the strength of column is reduced. And also creep buckling may occur. On this study, nonlinear analysis of reinforced concrete long column including crack effects is carried out and then the strength of long column is revaluated.

  • PDF

Assessments of Installation Damage and Creep Deformation of Geogrids (지오그리드의 시공시 손상 및 크리프 변형 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.29-40
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrids can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrids. This paper describes the results of a series of experimental investigation, which were conducted to assess the installation damage according to different fill materials and creep characteristic of various geogrids. The results of this study show that the installation damage and creep deformation of geogrids significantly depends on a row material and a manufacturing process of geogrids.

  • PDF

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.