• 제목/요약/키워드: Long cable

검색결과 498건 처리시간 0.02초

철도용 사장교의 케이블 정착구조에 관한 형식별 FEM해석 연구 (A Study on Stress Analysis of Cable Anchor System in Cable-Stayed Railway Bridge)

  • 박지호;공병승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.552-557
    • /
    • 2006
  • Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high-speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting-points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a flow pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

  • PDF

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

진동법을 이용한 사장교 시공단계별 케이블 장력관리 (Cable Tension Force Management Using Vibration Method at Cable Stayed Bridge Construction Stages)

  • 박연수;전동호;전양배;강경구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.127-134
    • /
    • 2005
  • 최근 컴퓨터 기술의 발달로 장대교량의 설계 및 시공이 증가하고 있다. 특히 케이블 요소를 갖는 사장교와 현수교는 장대교량을 대표한다 할 수 있을 것이다. 따라서 본 논문에서는 사장교로 시공중인 제2진도대교에 대하여 시공단계별로 전체케이블에 대한 장력을 측정하여 시공오차 등에 따른 장력보정값을 현장에서 즉시 제시하여 시공정밀도를 향상하고자 하였다. 이에 적용된 장력측정방법은 간접법인 가속도센서를 이용한 진동법을 적용하였다. 직접법에 비해 비교적 간편한 간접인 진동법을 통하여 보다 쉽게 장력을 추정할 수 있었으며, 시공의 정밀도를 향상시키기 위하여 전체 케이블을 4가지 시공단계별로 장력변화량을 모니터링하여 케이블 가설시 시공오차에 대한 장력보정값을 현장에서 제시하였다. 또한, 최종장력값을 설계값과 비교한 결과 간접법을 이용한 장력값과 유사한 것을 알 수 있었다. 그리고 온도 변화에 따른 케이블의 장력변화를 추후 유지관리 계측시 관리한계치 설정에 참고자료로 활용할 수 있도록 장력변화를 파악하였다.

마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석) (Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge))

  • 길흥배;박선규;한경봉;윤완석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

Stationary and non-stationary buffeting analyses of a long-span bridge under typhoon winds

  • Tao, Tianyou;Wang, Hao;Shi, Peng;Li, Hang
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.445-457
    • /
    • 2020
  • The buffeting response is a vital consideration for long-span bridges in typhoon-prone areas. In the conventional analysis, the turbulence and structural vibrations are assumed as stationary processes, which are, however, inconsistent with the non-stationary features observed in typhoon winds. This poses a question on how the stationary assumption would affect the evaluation of buffeting responses under non-stationary wind actions in nature. To figure out this problem, this paper presents a comparative study on buffeting responses of a long-span cable-stayed bridge based on stationary and non-stationary perspectives. The stationary and non-stationary buffeting analysis frameworks are firstly reviewed. Then, a modal analysis of the example bridge, Sutong Cable-stayed Bridge (SCB), is conducted, and stationary and non-stationary spectral models are derived based on measured typhoon winds. On this condition, the buffeting responses of SCB are finally analyzed by following stationary and non-stationary approaches. Although the stationary results are almost identical with the non-stationary results in the mean sense, the root-mean-square value of buffeting responses are underestimated by the stationary assumption as the time-varying features existing in the spectra of turbulence are neglected. The analytical results highlights a transition from stationarity to non-stationarity in the buffeting analysis of long-span bridges.

Wireless structural health monitoring of stay cables under two consecutive typhoons

  • Kim, Jeong-Tae;Huynh, Thanh-Canh;Lee, So-Young
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.47-67
    • /
    • 2014
  • This study has been motivated to examine the performance of a wireless sensor system under the typhoons as well as to analyze the effect of the typhoons on the bridge's vibration responses and the variation of cable forces. During the long-term field experiment on a real cable-stayed bridge in years 2011-2012, the bridge had experienced two consecutive typhoons, Bolaven and Tembin, and the wireless sensor system had recorded data of wind speeds and vibration responses from a few survived sensor nodes. In this paper, the wireless structural health monitoring of stay cables under the two consecutive typhoons is presented. Firstly, the wireless monitoring system for cable-stayed bridge is described. Multi-scale vibration sensor nodes are utilized to measure both acceleration and PZT dynamic strain from stay cables. Also, cable forces are estimated by a tension force monitoring software based on vibration properties. Secondly, the cable-stayed bridge with the wireless monitoring system is described and its wireless monitoring capacities for deck and cables are evaluated. Finally, the structural health monitoring of stay cables under the attack of the two typhoons is described. Wind-induced deck vibration, cable vibration and cable force variation are examined based on the field measurements in the cable-stayed bridge under the two consecutive typhoons.

Study of design parameters on flutter stability of cable-stayed bridges

  • Zhang, Xin-Jun;Sun, Bing-Nan
    • Wind and Structures
    • /
    • 제6권4호
    • /
    • pp.279-290
    • /
    • 2003
  • Flutter stability is one of major concerns on the design of long-span cable-stayed bridges. Considering the geometric nonlinearity of cable-stayed bridges and the effects due to the nonlinear wind-structure interactions, a nonlinear method is proposed to analyze the flutter stability of cable-stayed bridges, and a computer program NFAB is also developed. Taking the Jingsha bridge over the Yangtze River as example, parametric analyses on flutter stability of the bridge are carried out, and some important design parameters that affect the flutter stability of cable-stayed bridges are pointed out.

Mechanical features of cable-supported ribbed beam composite slab structure

  • Qiao, W.T.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.523-534
    • /
    • 2017
  • Cable-supported ribbed beam composite slab structure (CBS) is proposed in this study. As a new cable-supported structure, it has many merits such as long span availability and cost-saving. Inspired by the previous research on cable-supported structures, the fabrication and construction process are developed. Pre-stress design method based on static equilibrium analysis is presented. In the algorithm, the iteration convergence can be accelerated and the calculation result can be kept in an acceptable precision by setting a rational threshold value. The accuracy of this method is also verified by experimental study on a 1:5 scaled model. Further, important parameters affecting the mechanical features of the CBS are discussed. The results indicate that the increases of sag-span ratio, depth of the ribbed beam and cable diameter can improve the mechanical behavior of the CBS by some extent, but the influence of strut sections on mechanical behavior of the CBS is negligible.