• Title/Summary/Keyword: Long cable

Search Result 498, Processing Time 0.027 seconds

New leakage detection system for the hydraulic system of EHV underground oil-filled cables (초고압 OF 케이블 급유계통의 조기이상검지시스템)

  • Kim, Y.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1966-1968
    • /
    • 2000
  • Globally, oil-filled paper-insulated cables and cross-linked polyethylene-insulated cables have been mainly applied for a underground power transmission line. The oil-filled cable has the hydraulic system in which insulating oil, expanded and contracted by temperature changes, is absorbed and supplied. This system enable us to detect oil leakages from the cable. But it has some problems such as difficulty in detecting minor leakages and a relatively long period of fault detecting. And so, this paper introduce a new leakage detection system, improved from the current one.

  • PDF

Inductance Characteristics of Tokamak Poroidal Field Coil by the Plasma Current (Plasma Current에 의한 Tokamak Poroidal Field Coil의 Inductance 특성)

  • Chung, Yoon-Do;Lee, Seung-Je;Kim, Tae-Joong;Kim, Kee-Man;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.801-803
    • /
    • 2000
  • The large scale magnets like thermalnuclear fusion devices are necessary for superconducting CICC cable, When the Cable In Conduit Conductors(CICC) is occurred by the external turbulence, the CICC occurs to quench, The CICC can be broken because the CICC spends all energy in the quench-happened spot. Therefore, it is necessary to develop measurement systems of the quench detection. The measurement systems of the relative good degree of efficiency are the voltage tap sensors. The weak points of voltage tap sensors are effected by EMF noise and inductance. The thermalnuclear fusion devices easily can't measure inductance value because of plasma current. In the experiment, The value of inductance was estimated by FEM techniques and the decrement of Inductance value measured as long as remaining plasma current.

  • PDF

Electrical Characteristics of the Interfacial Layer between XLPE/EPDM Laminates on the Heat Treatment (열처리 조건에 따른 XLPE / EPDM 계면의 전기적 특성)

  • 최원창;이제정;김석기;조대식;한상옥;박강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.225-228
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/FPDM laminates in cable joint. In this parer, we instituted the interface of XLPE/EPDM laminates and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction current was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And conduction current of XLPE/Oil 12500cSt/EPDM was more stable than XLPE/Grease/EPDM from the long heat treatment time. AC breakdown strength of silicone oil itself from the heat treatment was changed during the 4∼12 hour heat treatment time.

  • PDF

Cooling Performance Test of the KEPCO HTS Power Cable

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.41-43
    • /
    • 2009
  • The HTS power cable system of 3-phase 100-m class has been tested at the KEPCO's Gochang power testing center in Korea during 8,000 hours or more for investigating long-term operating performance. The system is rated 22.9kV, 1250A and is cooled with sub cooled liquid nitrogen. Several cooling performance tests such as cooling capacity, heat load, AC loss, temperature stability and thermal cycle were performed at operating temperature of 66.4K and several different temperatures.

Development of Damage Evaluation Technology Considering Variability for Cable Damage Detection of Cable-Stayed Bridges (사장교의 케이블 손상 검출을 위한 변동성이 고려된 손상평가 기술 개발)

  • Ko, Byeong-Chan;Heo, Gwang-Hee;Park, Chae-Rin;Seo, Young-Deuk;Kim, Chung-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2020
  • In this paper, we developed a damage evaluation technique that can determine the damage location of a long-sized structure such as a cable-stayed bridge, and verified the performance of the developed technique through experiments. The damage assessment method aims to extract data that can evaluate the damage of the structure without the undamage data and can determine the damage location only by analyzing the response data of the structure. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To evaluate the performance of the developed technique experimentally, cable damage experiments were conducted on model cable-stayed bridges. As a result, the damage assessment method considering variability automatically outputs the damageless data according to external force, and it is confirmed that the performance of extracting information that can determine the damage location of the cable through the analysis of the outputted damageless data and the measured damage data is shown.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Development of a Voltage Measuring System for the Pusan-Hamada Submarine Cable (부산 - 병전간 해저케이블 전압측정 장치의 개발)

  • Bahk, Kyung-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.255-260
    • /
    • 1991
  • A voltage measuring system specified for the voltage fluctuation of the Pusan-Hamada submarine cable is developed by adding circuits of differential amplification and analog-to-digital conversion to a microprocessor-based data logger with a data modem. This system is charaterized by its small size. no power failure. fully unmanned operation. and precise instrumental drift correction. In addition to the cable voltage and current it measures an ambient temperature and a mercury cell voltage in order to calibrate temperature effect and check its long-term stability. The data acquired by this system show that the voltage signal. comprising fast random noises with a constant width of about 0.2V. fluctuates within a range of about 1V and the fluctuation frequency is similar to that of tidal motion. The source voltage of power feeding equipment (PFE) for the cable system seems to be affected when the room temperature changes rapidly.

  • PDF

Developing Equipment to Detect the Deterioration Status of 6.6kV Power Cables in Operation at Power Station (발전소에서 운전 중인 활성 6.6kV 전력 케이블의 고장상태를 파악하는 장치의 개발)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The technology to predict and prevent an accident of the cable system in power station is required. The techniques of inactivated diagnosis, partial discharge and $tan{\delta}$, have been adopted to diagnoze the operating characteristics of cables, but it is not so easy to find out problems in cables in an inactive state before the cable accident happens. In this paper, we did a research on the 6.6kV high-power cables, installed at Korean Western Power Station Co., Ltd. in order to diagonize the cables, playing a major role at the station. We have developed an equipment to measure an insulation resistance based on the temperature and current of the cable. By installing the system in a power station, we could find abnormal status for evaluation of the lifetime. In the short term, by analyzing the data, we apply the research result to the diagnosis and evaluation of the 6.6kV power cables. In the long run, however, we plan to reduce the cost of the installation and operation of cable systems at power stations.