• Title/Summary/Keyword: Logistic Regression model

Search Result 1,548, Processing Time 0.023 seconds

On the Logistic Regression Diagnostics

  • Kim, Choong-Rak;Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 1993
  • Since the analytic expression for a diagnostic in the logistic regression model is not available, one-step estimation is often used by a case-deletion point of view. In this paper, infinitesimal perturbation approach is used, and it is shown that the scale transformation of infinitesimal perturbation approach is eventually equal to the weighted perturbation of local influence approach and the replacement measure. Also, multiple cases deletion for the masking effect is considered.

  • PDF

Estimation of Logistic Regression for Two-Stage Case-Control Data (2단계 사례-대조자료를 위한 로지스틱 회귀모형의 추론)

  • 신미영;신은순
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper we consider a logistic regression model based on two-stage case-control sampling and study the Weighted Exogeneous Sampling Maximum Likelihood(WESML) method to get an asymptotically normal estimates of the parameters in a logistic regression model. A numerical example is carried out to demonstrate the differences between the Conditional Maximum Likelihood(CML) estimates and the WESML estimates for two-stage case-control data.

  • PDF

Logistic Regression Type Small Area Estimations Based on Relative Error

  • Hwang, Hee-Jin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.445-453
    • /
    • 2011
  • Almost all small area estimations are obtained by minimizing the mean squared error. Recently relative error prediction methods have been developed and adapted to small area estimation. Usually the estimators obtained by using relative error prediction is called a shrinkage estimator. Especially when data set consists of large range values, the shrinkage estimator is known as having good statistical properties and an easy interpretation. In this paper we study the shrinkage estimators based on logistic regression type estimators for small area estimation. Some simulation studies are performed and the Economically Active Population Survey data of 2005 is used for comparison.

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Analyzing Survival Data as Binary Outcomes with Logistic Regression

  • Lim, Jo-Han;Lee, Kyeong-Eun;Hahn, Kyu-S.;Park, Kun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.117-126
    • /
    • 2010
  • Clinical researchers often analyze survival data as binary outcomes using the logistic regression method. This paper examines the information loss resulting from analyzing survival time as binary outcomes. We first demonstrate that, under the proportional hazard assumption, this binary discretization does result in a significant information loss. Second, when fitting a logistic model to survival time data, researchers inadvertently use the maximal statistic. We implement a numerical study to examine the properties of the reference distribution for this statistic, finally, we show that the logistic regression method can still be a useful tool for analyzing survival data in particular when the proportional hazard assumption is questionable.

Comparison Study for Data Fusion and Clustering Classification Performances (다구찌 디자인을 이용한 데이터 퓨전 및 군집분석 분류 성능 비교)

  • 신형원;손소영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.601-604
    • /
    • 2000
  • In this paper, we compare the classification performance of both data fusion and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. Since the relationship between input & output is not typically known, we use Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: Clustering based logistic regression turns out to provide the highest classification accuracy when input variables are weakly correlated and the variance of data is high. When there is high correlation among input variables, variable bagging performs better than logistic regression. When there is strong correlation among input variables and high variance between observations, bagging appears to be marginally better than logistic regression but was not significant.

  • PDF

Relationship between periodontal disease and stroke history in the geriatric population - Using logistic regression model with 3-step adjustment considering effect of confounder (Confounder를 고려한 3단계의 logistic regression model을 통한 노인인구에 있어서의 치주질환과 뇌경색 경험 유무와의 상관관계에 대한 연구)

  • Lee, Hyo-Jung
    • The Journal of the Korean dental association
    • /
    • v.44 no.10 s.449
    • /
    • pp.658-670
    • /
    • 2006
  • 1980년대 후반기부터 치주질환과 뇌경색(ischemic stroke)자료의 연관성을 모색하는 시도가 있어왔다. 이번 연구의 목적은 치주질환과 뇌경색 유무와의 어떤 관계가 있는지를 60세 이상의 노인을 대상으로 조사, 통계 분석하였다. 자료는 미국의 총 국민조사 격인 The Third Nation Health and Nutrition Examination Survey (NHANES III)를 이용하였다. 이번 연구에서 unadjusted logistic model 통계법을 이용하여 치아 상실수와 뇌경색 경험이 통계학적으로 유의한 수치의 상관성이 있음을 알게 되었다. 또한 나이와 흡연유무를 고려, 조정한 후 multiple logistic model 통계법으로 잔존치아가 적을수록 더욱 뇌경색에 걸릴 확률이 높음을 보였다. 그러나 두 질병에 동시에 선택된 중요한 위험인자 (risk factor)를 모두 고려, 조정 한 후에는 통계학적인 유의성을 찾지 못했다. 치은퇴축, 치주낭 깊이, 치석, 탐침시 출혈과 뇌경색 경험은 각각의 비교법에서 약간의 상관성을 보이나, 모든 통계법을 통해 일괄된 결과를 얻을 수는 없었다.

  • PDF

Effect of zero imputation methods for log-transformation of independent variables in logistic regression

  • Seo Young Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • Logistic regression models are commonly used to explain binary health outcome variable using independent variables such as patient characteristics in medical science and public health research. Although there is no distributional assumption required for independent variables in logistic regression, variables with severely right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate normality. However, lab values often have zeros due to limit of detection which makes it impossible to apply log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is necessary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these methods, we performed a simulation study based on randomly generated data from log-normal distribution and logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root of the smallest nonzero method showed comparable and stable performances.

Making a Hazard Map of Road Slope Using a GIS and Logistic Regression Model (GIS와 Logistic 회귀모형을 이용한 접도사면 재해위험도 작성)

  • Kang, In-Joon;Kang, Ho-Yun;Jang, Yong-Gu;Kwak, Young-Joo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.85-91
    • /
    • 2006
  • Recently, slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and needs maintenance of road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF